A fizikai mennyiségek elnevezése, jele, egységei

Az International Union of Pure and Applied Physics (IUPAP) Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO) bizottsága többször adott ki ajánlást a fizikai mennyiségek jelölésére vonatkozóan. A legutóbbi, Symbols, Units, Nomenclature and Fundamental Constants in Physics című, E. R. Cohen és P. Giacomo által szerkesztett ún. piros könyv 1987-ben jelent meg. Megtalálható a Physica A: Statistical Mechanics and its Application folyóirat 1987. évi 146. kötetében is. A Nemzetközi Szabványügyi Szervezet (ISO) is foglalkozott a fizikai mannyiségek és egységek nevével és jelével. Az 1992-ben megjelent, közben több ponton módosított ISO 31 után 2006 óta folyamatosan jelennek meg a Quantities and units című ISO 80000 nemzetközi szabvány ajánlásai a fizika különböző területeire vonatkozóan. A fizikai mennyiségek magyar elnevezésével és jelölésével az MSZ 4900 Fizikai mennyiségek neve és jele című magyar szabvány foglalkozik. Az alábbiakban ezeket az ajánlásokat foglaljuk össze.

1. Általános ajánlások

A fizikai mennyiségeket egyetlen dőlt (kurzív, italic) latin vagy görög betűvel jelöljük, esetleg alsó vagy felső indexszel. Fizikai mennyiségek dimenziótlan kombinációira kétbetűs jelek is használatosak. Amennyiben ilyen kétbetűs szimbólumok szorzat tényezőjeként jelennek meg, a többi szimbólumtól szóközzel, szorzójellel vagy zárójellel kell elválasztani őket. A leggyakrabban használt mennyiségeket és szokásos jelüket a 3. pontban soroljuk fel.

Vektorok és tenzorok jelölésére célszerű különleges betűtípust használni. A következő választás ajánlott:

(a) A vektorokat félkövér dőlt betűvel írjuk, pl. a, A. A megfelelő normál dőlt betű, pl. a, A, a vektor abszolút értékét jelöli. A vektor komponenseit $(a_x, a_y \text{ és } a_z)$ illetve $A_x, A_y \text{ és } A_z)$ szintén dőlt, de normál betűtípussal szedjük. A relativitáselmélet négyesvektorait alsó-felső görög betűs indexszel jelöljük, amelyeket a skalárszorzatnál elhagyhatunk: $p^{\mu}x_{\mu} = \mathbf{p} \cdot \mathbf{x}$.

(b) Általában ugyancsak félkövér dőlt nagybetűvel írjuk a mátrixokat, pl. \boldsymbol{A} , a mátrixelemeket viszont a megfelelő normál dőlt kisbetűvel, pl. $a_{ij} = (\boldsymbol{A})_{ij}$. A mátrix determinánsára a det A, átlósösszegére a trA jelölést használjuk.

(c) A tenzorokat félkövér dőlt talp nélküli (sans serif) betűtípussal írjuk, pl. S, T, a tenzorok elemeit viszont dőlt talpas betűtípussal, pl. S_{ij} , T_{ijk} .

A IUPAP és az ISO 80000 ajánlásainak megfelelő betűtípusokat LATEXben a legegyszerűbben az isomath.sty stílusfájl alkalmazásával kaphatunk. Ennek híján vektorok jelölésére elfogadható a betű feletti nyíl, pl. \vec{a} , másodrendű tenzorok jelölésére pedig a szimbólum fölötti dupla nyíl vagy duplafejű nyíl, pl. \vec{S} vagy \overleftarrow{S} .

A kvantummechanikai operátorokat gyakran a szimbólum feletti kalappal különböztetjük meg a klasszikus mennyiségektől, pl. \hat{p} .

Ha az A mennyiség arányos B-vel, és A és B dimenziója különböző, az $A = k \cdot B$ összefüggésben szereplő k mennyiség neve általában együttható vagy modulus, pl. diffúziós együttható, Hall-együttható, rugalmassági modulus, Young-modulus. Ha A és B dimenziója azonos, a dimenziótlan kneve tényező vagy index (mutató), pl. súrlódási tényező, törésmutató.

Gyakran célszerű egy rendszer viselkedését vagy tulajdonságait fizikai mennyiségek valamilyen kombinációjával jellemezni. Ezt a kombinációt új mennyiségnek tekintve a neve általában paraméter, pl. Grüneisen-paraméter. Amennyiben ez a mennyiség dimenziótlan, neve szám, hányados vagy viszony, pl. Reynolds-szám, mozgékonysági hányados, hőkapacitások viszonya. Ennek megfelelően a hővezető képesség és a vezetőképesség hányadosából kapható, a fémekre jellemző mennyiség helyes neve nem Lorenzszám, hanem Lorenz-paraméter, esetleg Lorenz-együttható. Ha a dimenziótlan hányados szükségszerűen pozitív és egynél kisebb, neve tört, pl. móltört.

Az alapvető fizikai állandók, illetve az azok segítségével megadható, jól meghatározott értéket felvevő mennyiségek némelyikére használjuk az állandó kifejezést, pl. elektromos állandó (ε_0), mágneses állandó (μ_0), Newtonféle gravitációs állandó (G), Planck-állandó (h), Josephson-állandó (K_J), von Klitzing-állandó (R_K), finomszerkezeti állandó (α), Rydberg-állandó (R_{∞}), Fermi-féle csatolási állandó (G_F), Avogadro-állandó (N_A), atomi tömegállandó (m_u), Faraday-állandó (F), moláris gázállandó (R), Boltzmannállandó (k), Stefan–Boltzmann-állandó (σ).

Egy fizikai mennyiség értékét egy számérték és az egység szorzataként adjuk meg. Írásban a számérték és az egység jele között nem törhető szóköz van. Pl. 7 cm, 50 Hz. IATEX-ben a többek között sistyle.sty, a SIunits.sty vagy a siunitx.sty stílusfájlok alkalmazásával kaphatunk az ajánlásoknak megfelelő kifejezéseket. Táblázatokban, illetve diagramok tengelyein szereplő számok jelentésének egyértelművé tétele érdekében a táblázatok fejében és a diagramok tengelyeinél a fizikai mennyiség/egység alakot célszerű használni, pl. p/MPa, T/K a p (MPa), T (K) helyett. Átskálázott tengelyek is használhatók, pl. 10^3 K/T.

A mértékegység teljes nevét (centiméter, hertz, mól, radián) mindig kis álló (roman) betűtípussal írjuk. Tulajdonnévből származtatott mértékegységeknél az egység jelének a kezdőbetűje nagy (pl. amper, A, joule, J, weber, Wb, hertz, Hz). Nem tulajdonnévből származtatott neveknél a mértékegység jelének első betűje is kisbetű, pl. g, kat, lx, m, mol, rad. Kivételt teszünk a liter esetén, amelyre – az l betű és az 1 szám összetéveszthetősége miatt – az L jelölés is használható.

Ha több mértékegység jele együtt jelenik meg szorzatban, azok szóközzel vagy szorzójellel választandók el egymástól, pl. m kg s⁻² vagy m·kg·s⁻², Wb m⁻¹ vagy Wb·m⁻¹. Szóköz nélkül a m s⁻¹ sebességegység ms⁻¹-t, a milliszekundum inverzét jelöli. Bár a kWh-ban a szóköz hiánya nem okoz félreértést, a szabályos alak kW h. Negatív kitevő esetén használható a / jel, pl. m·kg/s², Wb/m. Egynél több / jel nem szerepelhet egy kifejezésben, így pl. J/K/mol helyett J/(K mol) vagy J K⁻¹ mol⁻¹ írandó.

Ha a jelek helyett a mértékegység nevét használjuk, az egyszerű összetételekben azok szóköz nélkül egybeírhatók, pl. amperóra, ampernégyzetméter, lumenóra, newtonméter, ohmméter, voltamper, wattóra. Viszont ugyanabban a kifejezésben a mértékegységek neve és jele nem használható vegyesen. Tehát nem írható Ω méter, csak Ω m vagy ohmméter.

A mértékegységeknek az SI által elfogadott, a 4. szakaszban felsorolt előtagokkal (prefixumokkal) kombinált jelei új jelnek tekintendők, zárójel használata nélkül emelhetők pozitív vagy negatív hatványra, pl. cm², cm⁻³.

Független, kölcsön nem ható alrendszerek esetén additív extenzív menynyiségek esetén a fajlagos (faj-) szó általában az egységnyi tömegű anyagra vonatkoztatott értéket jelenti. Pl. fajlagos térfogat = térfogat/tömeg, fajlagos belső energia = belső energia/tömeg, fajlagos hőkapacitás = hőkapacitás/tömeg. Szokásosan nagybetű jelöli az extenzív fizikai mennyiséget, a megfelelő kisbetű pedig a fajlagos mennyiség jelölésére szolgál, pl. a fajlagos térfogat jele v. a fajlagos belső energiáé u, a fajlagos hőkapacitásé c. Kivétel a fajlagos ellenállás, a fajlagos vezetőképesség és a fajlagos forgatóképesség, amelyek nem egy extenzív mennyiségnek egységnyi tömegre vonatkoztatott értékeként vannak definiálva. Kerülendő az a szokásos szóhasználat, amelyben, pl. a fajhő esetén, a fajmennyiség az egységnyi térfogatra vonatkoztatott értéket jelenti. Ugyanis az intenzív, a térfogattal osztott skaláris mennyiségre a sűrűség kifejezést használjuk, pl. tömegsűrűség, energiasűrűség. A lineáris vagy felületi jelzővel együtt a sűrűség az egységnyi hosszra, illetve az egységnyi felületre vonatkoztatott mennyiséget jelenti, pl. felületi töltéssűrűség. Viszont a fluxust megadó vektormennyiségeknél a sűrűség a fluxussűrűségre, a felülettel osztott mennyiségre utal. Pl. az áramsűrűség a felületegységen áthaladó részecskefluxust jelenti.

Több komponensű rendszerek esetén bizonyos, a teljes térfogattal osztott mennyiségek esetén a koncentráció kifejezést használjuk. Az A komponens anyagmennyiség-koncentrációja: $c_{\rm A} = n_{\rm A}/V$, tömegkoncentrációja pedig $\rho_{\rm A} = m_{\rm A}/V$.

A moláris (mól-) toldalék egy extenzív mennyiség esetén az egységnyi anyagmennyiségre (mólnyi mennyiségre) vonatkoztatott értéket jelenti. Pl. moláris tömeg = tömeg/anyagmennyiség, moláris térfogat (móltérfogat) = térfogat/anyagmennyiség. Az intenzív moláris mennyiséget a megfelelő extenzív mennyiség jele mellé tett álló m indexszel jelöljük, pl. V a térfogat, $V_{\rm m} = V/n$ a moláris térfogat.

2. Dőlt és álló betűk használata fizikai szövegben

Åltalános szabály, hogy a fizikai mennyiségek vagy változók jele dőlt (*italic*), a fizikai mennyiség értékét megadó szám és a mértékegység neve vagy jele viszont álló (roman) betűtípussal írandó, pl. l = 1 cm, I = 5 A. Álló betűtípussal írjuk a mértékegység jelével egybeírt előtagokat is, pl. cm, fs, kJ, MW, THz. Pontot csak a mondat végén teszünk a mértékegység után. A számok egyéb helyzetben is, például indexben, mindig álló karakterrel írandók.

A fizikai mennyiség további pontosítására indexeket használhatunk. Ezeket attól függően írjuk dőlt vagy álló betűvel, hogy mire utalnak. Csak az az index dőlt, amelyik maga is egy fizikai mennyiség jele vagy változó, pl. összegző index. Pl. C_p jelöli az állandó nyomáshoz tartozó hőkapacitást, P_x a \boldsymbol{P} vektor x komponensét, S_{ij} az \boldsymbol{S} tenzor elemeit. Dőlt betű szerepel összegző indexként a $\sum_n a_n \phi_n$ vagy $\sum_n a_n x^n$ kifejezésben. A leíró jellegű indexek és az indexben szereplő számok azonban álló betűtípusúak. Pl. az \boldsymbol{S} tenzor mátrixa 1. sorának 2. eleme $S_{1,2}$, a moláris entalpia $H_{\rm m}$, az állandó nyomáshoz tartozó moláris hőkapacitás $C_{p,{\rm m}}$, a relatív permittivitás $\epsilon_{\rm r}$, a kritikus hőmérséklet $T_{\rm c}$, a Josephson-állandó $K_{\rm J}$. $\mu_{\rm A}$ jelöli az A anyag kémiai potenciálját, de μ_i az *i*-edik komponens kémiai potenciálját, mivel *i* ilyenkor változó.

Az alapvető fizikai állandókat fizikai mennyiségnek tekintjük, ezért dőlt betűvel írandók, annak ellenére, hogy az atomfizikában olykor az ezekből származó ún. atomi egységeket használják mértékegységnek. (A sebesség egysége a fény terjedési sebessége vákuumban, c, a hatás egysége a redukált Planck-állandó, \hbar , a tömeg egysége az elektron nyugalmi tömege, $m_{\rm e}$. a hosszúság egysége a Bohr-sugár, a_0 , az elektromos töltés egysége az elemi töltés, e, az energia egysége a Hartree-energia, $E_{\rm h}$, az idő egysége a hatás és az energia hányadosa, $\hbar/E_{\rm h}$.) Az elektronvolt, az egységes atomi tömegegység, a dalton és az asztronómiai hosszegység mértékegységnek tekintendő, ezért eV, u, Da és au vagy CSE álló betűvel írandó.

A számokat és jelölőket (label, melynek nem lehet értéket adni) álló betűvel írjuk. Pl. a szénatomban az elektronhéj konfigurációja [He] $2s^2 2p^2$.

A kémiai elemek jele álló betű, pl. H, He, Li, … Ugyancsak álló betű jelöli az elemi részecskéket: e (elektron), p (proton), u (u-kvark), K (K-mezon). Az elektront jelölő e nem keverendő az elemi töltés *e* jelével.

Bár a IUPAP ajánlásaiban ez nem szerepel, az ISO 80000 szerint ugyanezek a szabályok alkalmazandók a görög betűvel írt szimbólumokra is. Így a mozgékonyság jele μ , de álló μ jelenik meg a mikrométer egységben (μ m). Mivel nem fizikai mennyiségeket jelölnek, álló görög betűket használnak az atom- és részecskefizikában a részecskék jelére, pl. α (alfa-részecske), β -sugárzás, Λ (Lambda-hiperon), μ (müon), a csillagászatban a csillagok neveiben, pl. τ Ceti, valamint az elemek többféle kristályos fázisának megkülönböztetésére, pl. α -vas, γ -vas.

A matematikai változókat dőlt (italic) betűvel írjuk, az ismert matematikai függvényeket azonban mindig álló betűvel kell írni, pl. exp x, e^x , $\lg x$, $\sin x$, $\sinh x$ vagy $\sinh x$, $\arctan x$ vagy $\arctan x$, $\operatorname{arccot} x$ vagy $\operatorname{arcctg} x$, $\operatorname{arcosh} x$ vagy $\operatorname{arch} x$. Ha a függvény jele két vagy több betűből áll, és az argumentumban nem szerepel +, - vagy / jel, az argumentumban elhagyható a zárójel, de ilyenkor a függvény jele és az argumentum között kis szóközt kell hagyni, pl. $\sin 2x$, de $\sin(x/2)$. Zárójelet kell használni az egy betűvel jelzett függvények esetén, pl. $j_l(z)$, $\Gamma(x)$, $P_n(z)$, valamint akkor, ha fennáll a tévedés veszélye.

Álló Δ , illetve δ használandó egy mennyiség véges, illetve infinitezimális növekményének a jelölésére, álló d a teljes differenciálra: dx. Ennek megfelelően az f(x) függvény differenciálhányadosának és integráljának jele

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x}, \qquad \int f(x)\,\mathrm{d}x.$$

Álló szedéssel kell írni az i = $\sqrt{-1}$ imaginárius egységet, valamint a reális és az imaginárius rész jelét: z = z' + iz'', ahol $z' = \operatorname{Re} z$ és $z'' = \operatorname{Im} z$. Ugyancsak álló a $\pi = 3,141592...$ szám, a természetes logaritmus alapja, e = 2,718281..., a szumma és a produktum jele, Σ , Π , valamint a matematikai operátorok, pl. div, grad, rot jele. A **div**, **grad** és **rot** operátor, illetve a nabla operátor, ∇ félkövéren is szedhető, mert vektort jelképez. A Laplace-operátor, \triangle és a d'Alembert-operátor, \Box viszont nem félkövér.

A kémiai nómenklatúra szerint a *cisz-, transz-, orto-, para-* előtagokat vegyületek nevében, pl *cisz*-poliacetilén, dőlt betűvel kell írni. Egyéb helyzetekben, pl. cisz-transz átmenet, álló betűt használunk.

A krisztallográfiában a szimmetriaelemek, a kristályrendszerek, a rácstípusok, a kristálytani pontcsoportok és tércsoportok jelölésére is, bár azok nem fizikai mennyiségek és nem változók, hagyományosan dőlt betűket használnak.

3. A fizikai mennyiségek neve és ajánlott jele

Az alábbiakban a IUPAP ajánlásait követve a fizikai mennyiségekre leggyakrabban használt jeleket adjuk meg. Az ajánlások nem kötelező jellegűek, a szerző szabadon választhatja meg a fizikai mennyiségre használt jelet, ha megfelelően definiálja azt, de a szokásos jelölés használata megkönnyíti a jelek mögötti információ továbbadását. Ahol több jel szerepel, a sorrend nem jelent preferenciát. A zárójelben megadott szimbólumok azonban másodlagosan használandók, ha el akarjuk kerülni, hogy ugyanaz a jel többféle jelentéssel forduljon elő. Azoknál a görög betűknél, amelyeknek két változata ismert, pl. ϵ és ε , θ és ϑ , vagy ϕ és φ , bármelyik használható.

Sok többes összetételű, többnyire az angolból átvett és lefordított fizikai kifejezés esetén a hagyományos írásmód nem pontosan tükrözi az eredeti értelmet. Ugyanez igaz több fizikai mennyiség nevére is. Mivel a szabványokban a hagyományos írásmódot használják, az alábbi táblázatokban is ez szerepel. A szótári részben tüntetjük fel a kifejezés jelentésének jobban megfelelő alakot.

Tér és idő

space coordinates	térkoordináták	(x_1, x_2, x_3)
cartesian space coordinates	derékszögű térkoordináták	(x,y,z)
spherical polar coordinates	gömbi polárkoordináták	$(r,artheta,\phi)$
cylindrical coordinates	hengerkoordináták	(ho,artheta,z)
relativistic coordinates:	relativisztikus koordináták	(x_0, x_1, x_2, x_3)
$x_0 = ct, \ x_1 = x, \ x_2 = y,$	$x_3 = z, x_4 = \mathrm{i}ct$	(x_1, x_2, x_3, x_4)
position vector	helyvektor	r
length	m hosszúság	l, L, a
breadth	szélesség	b
height	magasság	h
distance	távolság	d
radius	sugár	r, R
thickness	vastagság	d, δ
diameter: $2r$	átmérő	d
path length	út	s
length of arc	ívhossz, ívhosszúság	s
element of path	útelem	$\mathrm{d}s,\mathrm{d}l$
area	terület, keresztmetszet, felszín	A, S
volume	térfogat, köbtartalom	V, v
plane angle	síkszög	$lpha,eta,\gamma, heta,\phi$
solid angle	térszög	Ω,ω
wavelength	$\operatorname{hull\acute{a}mhossz}$	λ
wave number: $1/\lambda$	hullámszám	σ
wave vector	${ m hull} { m ámsz} { m ámvektor}$	σ

körhullámszám	k
körhullámszám-vektor,	\boldsymbol{k}
${ m hull}{ m ámvektor}$	
idő, időtartam	t
periódus, periódusidő	T
frekvencia	f, u
körfrekvencia	ω
időállandó, relaxációs idő	au
(időbeli) csillapítási együtt-	δ, λ
ható	
(térbeli) csillapítási együtt-	α
ható	
növekedési ráta	γ
logaritmikus dekrementum	Λ
${ m sebess}$ égvektor	$oldsymbol{v},oldsymbol{u},oldsymbol{w},oldsymbol{c}$
és annak komponensei	(u, v, w)
sebesség	v,u
fénysebesség vákuumban	С
gyorsulás	a
nehézségi gyorsulás	g
szögsebesség	ω
forgásvektor, szögsebesség-	ω
vektor	
szöggyorsulás	lpha,eta
	körhullámszám körhullámszám-vektor, hullámvektor idő, időtartam periódus, periódusidő frekvencia körfrekvencia időállandó, relaxációs idő (időbeli) csillapítási együtt- ható (térbeli) csillapítási együtt- ható növekedési ráta logaritmikus dekrementum sebességvektor és annak komponensei sebesség fénysebesség vákuumban gyorsulás nehézségi gyorsulás szögsebesség forgásvektor, szögsebesség- vektor szöggyorsulás

Mechanika

tömeg	m
sűrűség	ρ
felületi sűrűség	ρ_A, ρ_S
relatív sűrűség	d
fajlagos térfogat (fajtérfogat)	v
redukált tömeg	$\mu,m_{ m r}$
lendület, impulzus	p
perdület, impulzus-	$oldsymbol{L},oldsymbol{J}$
	tömeg sűrűség felületi sűrűség relatív sűrűség fajlagos térfogat (fajtérfogat) redukált tömeg lendület, impulzus perdület, impulzus-

$oldsymbol{r} imes oldsymbol{p}$	$\mathrm{momentum}$	
moment of inertia:	tehetetlenségi nyomaték	I, J
$\sum m_i r_i^2$		
force	erő	$oldsymbol{F}$
impulse: $\int \boldsymbol{F} dt$	erőlökés, erőimpulzus	Ι
weight	súly	G, W, P
gravitational constant	gravitációs állandó	G
moment of force, torque:	erőnyomaték, forgató-	$oldsymbol{M},oldsymbol{T}$
$oldsymbol{r} imes oldsymbol{F}$	nyomaték	
angular impulse:	nyomatéklökés, forgatólökés,	H
$\int oldsymbol{M} \mathrm{d}t$	$\operatorname{nyomat}\acute{\mathrm{e}}\operatorname{kimpulzus}$	
pressure	nyomás	p, P
normal stress	merőleges feszültség	σ
linear strain, relative elongation: $\Delta l/l_0$	nyúlás, fajlagos hosszváltozás	$\varepsilon, \varepsilon_l, e$
modulus of elasticity	rugalmassági modulus,	E, (Y)
tensile modulus	nyújtási modulus,	
Young's modulus: σ/ϵ	Young-modulus	
shear stress	csúsztató feszültség (nyírófeszültség)	au
shear strain	csúszás	γ
shear modulus	csúsztatási modulus, nyírási	G,μ
modulus of rigidity: τ/γ	modulus, torziómodulus	
stress tensor	${ m fes}$ zültségtenzor	$\sigma_{ij}, \tau_{ij},$
strain tensor	deformációs tenzor, nyúlási tenzor, dilatációs tenzor	ϵ_{ij}
elasticity tensor:	rugalmassági tenzor	c_{ijkl}
$ au_{ij} = c_{ijkl} \epsilon_{lk}$		
compliance tensor: $\varepsilon_{kl} = s_{klij} \tau_{ij}$	komplianciatenzor	s_{klji}
Lamé coefficients for an	Lamé-együtthatók izotrop	λ, μ
isotropic medium: c_{ijkl}	anyagban	
$=\lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$		
volume strain,	fajlagos térfogatváltozás	θ, ε_V
bulk strain: $\Delta V/V_0$	_	
bulk modulus, compression modulus: $-V_0(dp/dV)$	térfogati rugalmassági ténye- ző, kompressziómodulus	K

Poisson ratio	Poisson-szám	μ, u
compressibility: $1/K$	kompresszibilitás	κ
(dynamic) viscosity	(dinamikai) viszkozitás	$\eta,(\mu)$
kinematic viscosity: η/ρ	kinematikai viszkozitás	ν
fluidity: $1/\eta$	folyékonyság	φ
friction factor	súrlódási tényező	$\mu,(f)$
surface tension	felületi feszültség	γ,σ
energy	energia	E, W
potential energy	potenciális (helyzeti) energia	$E_{ m p},V,arPhi,U$
kinetic energy	mozgási energia	$E_{\rm k},T,K$
work: $\int \boldsymbol{F} \cdot \mathrm{d}s$	munka	W, A
power: dE/dt	teljesítmény	P
efficiency	hatásfok	η
generalized coordinate	általános koordináta	\boldsymbol{q}, q_i
generalized momentum:	általános impulzus	\boldsymbol{p}, p_i
$p_i = \partial L / \partial q_i$		
action (integral): $\int L dt$	$hat \acute{a}s (integrál)$	J, S
Lagrange function, Lagran-	Lagrange-függvény	$L, (\mathcal{L})$
gian: $T(q_i, \dot{q}_i) - V(q_i, \dot{q}_i)$		
Hamilton function, Hamil-	Hamilton-függvény	$H,(\mathcal{H})$
tonian: $\sum_i p_i \dot{q}_i - L$		
principal function of	Hamilton-féle principális függ-	$W,S_{ m p}$
Hamilton	vény	
characteristic function of	Hamilton-féle karakterisztikus	S
Hamilton: $\int \sum_i p_i \mathrm{d}q_i$	függvény	
Statisztikus fizika		
number of particles	részecskeszám	N
number density of particles:	részecskeszám-sűrűség	n
N/V		
Avogadro constant	Avogadro-állandó	N_{A}
Boltzmann constant	Boltzmann-állandó	$k, k_{\rm B}$
(molar) gas constant: $N_{\rm a}k_{\rm B}$	moláris gázállandó	R
particle position vector	részecske helyzetvektora	$\boldsymbol{r},(x,y,z);$
and its components	és annak komponensei	$(r, artheta, \phi)$
particle velocity vector	részecske sebességvektora	$\boldsymbol{c},(c_x,c_y,c_z);$
and its components	és annak komponensei	$\boldsymbol{v},(v_x,v_y,v_z)$
particle momentum vector	részecske lendületvektora	$\boldsymbol{p},(p_x,p_y,p_z)$

és annak komponensei

and its components

average velocity	átlagos sebességvektor	$oldsymbol{c}_0,oldsymbol{v}_0,\langleoldsymbol{c} angle,\langleoldsymbol{v} angle$
average speed	átlagos sebesség	$\overline{c}, \overline{v}, \langle c \rangle, \langle v \rangle, u$
most probable speed	legvalószínűbb sebesség	\hat{c},\hat{v}
mean free path	közepes szabad úthossz	l, λ
interaction energy between particles i and j	i és j részecske közötti kölcsönhatási energia	ϕ_{ij}, V_{ij}
velocity distribution function: $n = \int f(\boldsymbol{v}) \mathrm{d}v_x \mathrm{d}v_y \mathrm{d}v_z$	sebességeloszlási függvény	$f(oldsymbol{v})$
Boltzmann function	Boltzmann-függvény	H
volume in γ phase space	fázistér térfogata	Ω
density of states	állapotsűrűség	$\rho(E)$
canonical partition function	kanonikus állapotösszeg	Z
microcanonical partition function	mikrokanonikus állapotösszeg	Ω
grand canonical partition function	nagykanonikus állapotösszeg	Ξ
symmetry number	szimmetriaszám	s
diffusion coefficient	diffúziós együttható	D
thermal diffusion coefficient	termodiffúziós együttható	D_{td}, D_T
thermal diffusion ratio	termodiffúzió-arány	k_T
thermal diffusion factor	termodiffúziós tényező	α_T
characteristic temperature	karakterisztikus hőmérséklet	Θ
Debye temperature: $h\nu_{\rm D}/k$	Debye-hőmérséklet	Θ_{D}
Einstein temperature: $h\nu_{\rm E}/k$	Einstein-hőmérséklet	Θ_{E}
rotational characteristic temperature: $h^2/8\pi^2 kI$	karakterisztikus forgási hőmérséklet	$\Theta_{ m rot}$
vibrational characteristic temperature: $h\nu/k$	karakterisztikus rezgési hőmérséklet	$\Theta_{ m vib}$
inverse of $k_{\rm B}T$	$k_{\rm B}T$ reciproka	β
statistical entropy: $-k_{\rm P}\sum_{i} n_i \ln n_i$	statisztikus entrópia	S
density operator:	sűrűségoperátor	ô
$\sum_k p_k \Psi_k\rangle \langle \Psi_k $	surasegoperator	Ρ
density matrix	sűrűségmátrix	ho
element: $\langle \phi_m \hat{ ho} \phi_n \rangle$	mátrixeleme	$ ho_{mn}$

Termodinamika, hőmennyiségek

Szükség esetén m indexszel jelöljük, hogy az adott extenzív fizikai menynyiség egy mólnyi anyagmennyiségre vonatkozik, pl. $U_{\rm m}$ jelöli a mólnyi anyag belső energiáját, $C_{\rm m}$ a mólnyi anyag hőkapacitását, $V_{\rm m}$ a móláris térfogatot. Gyakran használt konvenció, hogy nagybetű jelöli az extenzív

fizikai mennyiséget, kisbetű pedig a fajlagos, a tömeggel osztott mennyiséget.

quantity of heat	hőmennyiség	Q
work	munka	W
thermodynamic temperature	termodinamikai hőmérséklet	T
Celsius temperature	hőmérséklet Celsius-skálán	t, heta
entropy	entrópia	S
internal energy	belső energia	U
Helmholtz function: $U - TS$	Helmholtz-függvény, szabad- energia	A, F
enthalpy: $U + pV$	entalpia, hőtartalom	H
Gibbs function: $H - TS$	Gibbs-függvény, szabad- entalpia	G
Massieu function: $-A/T$	Massieu-függvény	J
Planck function: $-G/T$	Planck-függvény	Y
pressure coefficient: $(\partial p/\partial T)_V$	nyomásegyüttható	β
relative pressure coefficient: $(1/p)(\partial p/\partial T)_V$	relatív nyomásegyüttható	α_p, α
compressibility: $-(1/V)(\partial V/\partial p)_T$	kompresszibilitás	κ_T, κ
linear expansion coefficient	lineáris hőtágulási együttható	α_l
cubic expansion coefficient: $(1/V)(\partial V/\partial T)_p$	térfogati hőtágulási együtt- ható	$lpha_V,eta,\gamma$
heat capacity	hőkapacitás	C
heat capacity at constant pressure	hőkapacitás állandó nyomáson	C_p
heat capacity at constant volume	hőkapacitás állandó térfogatnál	C_V
specific heat capacity: C/m	fajlagos hőkapacitás	c, c_p, c_V
Joule–Thomson coefficient	Joule–Thomson-együttható	μ
isentropic exponent: $-(V/p)(\partial p/\partial V)_S$	izentropikus kitevő	ĸ
ratio of specific heat capa- cities: c_p/c_V	fajlagos hőkapacitások viszonya, fajhőviszony	$\gamma,(\kappa)$
heat flow rate	hőáram	$\Phi, (q)$
density of heat flow rate	hőáramsűrűség	$q, (\phi)$
heat transfer coefficient	hőátadási együttható	α

thermal conductivity	hővezető képesség,	$\kappa, k, K, (\lambda)$
	hővezetési együttható	
thermal diffusivity: $\lambda/ ho c_p$	hődiffuzivitás, hőmérséklet-	a,(D)
	vezetési együttható	
efficiency	hatásfok	η

Elektromosság és mágnesség

electric current	elektromos áramerősség	I, (i)
electric current density	elektromos áramsűrűség	j, J
electric charge: $dQ = I dt$	elektromos töltés	Q, q
electric charge density	(térfogati) töltéssűrűség	ρ
surface charge density	felületi töltéssűrűség	σ
linear charge density	vonal menti töltéssűrűség	$ ho_l, au$
electric potential	elektromos potenciál	V,ϕ
electric potential difference:	elektromos potenciál-	$V_{ m ab},\Delta V,\Delta\phi$
$V_{ m a}-V_{ m b}$	különbség	
voltage, electric tension	elektromos feszültség	U
source voltage, source	forrásfeszültség	$U_{\rm s}$
tension		
electromotive force	elektromotoros erő	E, \mathcal{E}
electric field (strength)	elektromos térerősség	${oldsymbol E}$
electric flux	elektromos (eltolási) fluxus	Ψ
scalar magnetic potential	mágneses potenciál	$V_{ m m},arphi$
magnetic potential difference	mágneses potenciálkülönbség	$U_{ m m}$
magnetomotive force: $\int H_s \mathrm{d}s$	magnetomotoros erő	$F_{ m m}$
magnetic field strength	mágneses térerősség	H
electric dipole moment	elektromos dipólusmomentum	p
electric polarization: $\mathrm{d}\boldsymbol{p}/\mathrm{d}V$	elektromos polarizáció	P
polarizability	polarizálhatóság	$lpha,\gamma$
electric displacement, electric	elektromos eltolás	D
flux density: $\epsilon_0 E + P$	(elektromos fluxussűrűség)	
permittivity: $oldsymbol{D} = \epsilon oldsymbol{E}$	permittivitás	ϵ
electric constant,	elektromos állandó,	ϵ_0
permittivity of vacuum	vákuum permittivitása	
relative permittivity: ϵ/ϵ_0	relatív permittivitás,	$\epsilon_{\rm r}, K$
	dielektromos állandó	
electric susceptibility: $\epsilon_{\rm r} - 1$	elektromos szuszceptibilitás	$\chi_{ m e}$

displacement current density: $\partial D / \partial t$	eltolási áramsűrűség	$oldsymbol{J}_D$
displacement current	eltolási áramerősség	I_D
total current: $I + I_D$	teljes áramerősség	$I_{\rm t}, I_{\rm tot}$
total current density: $J + J_D$	teljes áramsűrűség	$oldsymbol{J}_{\mathrm{t}},oldsymbol{J}_{\mathrm{tot}}$
magnetic vector potential	mágneses vektorpotenciál	\boldsymbol{A}
magnetic induction,	mágneses indukció,	B
magnetic flux density	mágneses fluxussűrűség	
magnetic flux	mágneses fluxus	Φ
permeability: $\boldsymbol{B} = \mu \boldsymbol{H}$	permeabilitás	μ
magnetic constant,	mágneses állandó,	μ_0
permeability of vacuum	vákuum permeabilitása	
relative permeability: μ/μ_0	relatív permeabilitás	$\mu_{ m r}$
magnetic susceptibility: $\mu_{\rm r} - 1$	mágneses szuszceptibilitás	χ , $(\chi_{\rm m})$
magnetic moment	mágneses momentum	$oldsymbol{m},oldsymbol{\mu}$
magnetization: $\mathrm{d}\boldsymbol{m}/\mathrm{d}V$	${ m m}{ m agnesez}{ m ett}{ m s}{ m eg}$	M
magnetic dipole moment:	mágneses dipólusmomentum	$oldsymbol{j},oldsymbol{j}_{\mathrm{m}}$
$\mu_0 oldsymbol{m}$		
magnetic polarization: $\mu_0 M$	mágneses polarizáció	$oldsymbol{J},oldsymbol{J}_{\mathrm{m}}$
capacitance	kapacitás	C
resistance	(egyenáramú) ellenállás	R
conductance: $1/R$	(egyenáramú) vezetés	G
resistivity	fajlagos ellenállás	ρ
conductivity: $1/\rho$	fajlagos vezetés,	σ,γ
impedance	impedancia	Z
impedance of free	vákuum impedanciája	Z
space' Hoco	variatin impedanciaja	20
modulus of impedance	látszólagos ellenállás	Z
resistance: Re Z	hatásos ellenállás	R
reactance: Im Z	meddő ellenállás	X
admittance: $1/Z$	admittancia	Y
modulus of admittance	látszólagos vezetés	Y
conductance: $\operatorname{Re} Y$	hatásos vezetés	G
susceptance: $\operatorname{Im} Y$	meddő vezetés	В
loss angle: $\arctan(X/R)$	veszteségi szög	δ
inductance, self-inductance	öninduktivitás	L

mutual inductance	kölcsönös induktivitás	M, L_{12}
coupling factor:	csatolási tényező	k
$L_{12}/(L_1L_2)^{1/2}$		
quality factor	jósági tényező	Q
loss factor	veszteségi tényező	d
electromagnetic energy	elektromágneses energia-	w,u
density	sűrűség	
Poynting vector	Poynting-vektor	$oldsymbol{S}$
power	${ m teljes}$ ítmény	P
apparent power	látszólagos teljesítmény	S
true (active) power	hatásos teljesítmény	P
reactive power	meddő teljesítmény	Q

Sugárzás és fény

Az alábbi mennyiségeket egyformán használjuk látható fényre és az elektromágneses sugárzás teljes spektrumára. Ha szükséges a megkülönböztetés, akkor az e (energetic), v (visible), illetve a p (photon) indexszel lehet különbséget tenni, pl. $I_{\rm e}$ jelöli a sugárerősséget, $I_{\rm v}$ a fényerősséget, illetve $I_{\rm p}$ a fotonáram erősségét.

A mennyiségek spektrális sűrűségét úgy definiáljuk, hogy a λ és $\lambda + d\lambda$ közötti tartományba eső hullámhosszakhoz tartozó részt osztjuk d λ -val. Hasonlóan definiálható a frekvencia, körfrekvencia vagy hullámszám szerinti spektrális sűrűség. λ , ν , ω , σ vagy $\overline{\nu}$ index jelzi, hogy melyik spektrális sűrűségről van szó. Kapcsolatukat

$$g_{\nu}(\nu) = 2\pi g_{\omega}(\omega) = g_{\lambda}(\lambda)c/n = g_{\sigma}(\sigma)n/c = g_{\overline{\nu}}(\overline{\nu})/c$$

adja.

speed of light in vacuum	fénysebesség vákuumban	c, c_0
frequency	frekvencia	u, f
angular frequency: $2\pi\nu$	körfrekvencia	ω
refractive index: c_0/c	törésmutató	n
absorption index	abszorpciós index	k
(extinction coefficient)	(extinkciós együttható)	
complex refractive index:	komplex törésmutató	\hat{n}, N
$n + \mathrm{i}k$		
wavelength: c/ν	hullámhossz	λ
wave number: $1/\lambda$	hullámszám	σ
angle of optical rotation	optikai forgatás szöge	α

radiant energy	sugárzott energia	$Q,(Q_{ m e}),W$
radiant energy density:	sugárzott energia sűrűsége	w
$\mathrm{d}Q/\mathrm{d}V$		
spectral radiant energy	sugárzott energiasűrűség	w_{λ}
density in term of	spektrális sűrűsége	
wavelength: $\mathrm{d}w/\mathrm{d}\lambda$	(hull amhossz ban)	<i>.</i> .
radiant (energy) flux,	sugárzott teljesítmény,	$\Phi,(\Phi_{ m e}),P$
radiant power: $\mathrm{d}Q/\mathrm{d}t$	fluxus	
radiant flux density:	sugárzott fluxussűrűség	ϕ
$\Phi = \int \phi \mathrm{d}A$		
radiant intensity: $\Phi = \int I \mathrm{d}\Omega$	sugárerősség	$I,~(I_{ m e})$
spectral radiant intensity	sugárerősség spektrális	$I(u), I_{ m e}(u)$
in terms of frequency:	sűrűsége (frekvenciában)	$I_{\nu}, (I_{\mathrm{e},\nu})$
$I = \int I(\nu) \mathrm{d}\nu$		
irradiance (radiant flux	besugárzott felületi telje-	$E, (E_{\rm e})$
received): $\Phi = \int E \mathrm{d}A$	sítmény	
radiance: $I = \int L \cos \vartheta \mathrm{d}A$	sugársűrűség	$L, (L_{\rm e})$
radiant excitance	kisugárzott felületi telje-	$M, (M_{\rm e})$
(emitted radiant flux):	sítmény	
$\Phi = \int M \mathrm{d}A_{\mathrm{source}}$		
emissivity, emittance: $M/M_{\rm b}$	emissziós tényező	ε
$(M_{\rm b} \text{ is the radiant})$	$(M_{\rm b}$ a fekete test kisugár-	
excitance of a black body)	zott felületi teljesítménye)	
Stefan–Boltzmann constant:	Stefan–Boltzmann-állandó	σ
$M_{\rm b} = \sigma T^4$		
luminous efficacy of radia-	sugárzás fényhasznosítása	K
tion: $\Phi_{\rm v}/\Phi_{\rm e}$		
spectral luminous efficacy:	spektrális fényhasznosítás	$K(\lambda)$
$\Phi_{\mathrm{v},\lambda}/\Phi_{\mathrm{e},\lambda}$		
maximum spectral luminous	maximális spektrális fény-	K_{m}
efficacy	hasznosítás	
luminous efficiency: $K/K_{\rm m}$	sugárzás fényhatásfoka	V
spectral luminous efficiency:	spektrális fényhatásfok,	$V(\lambda)$
$K(\lambda)/K_{\rm m}$	láthatósági tényező	
luminous energy,	fényenergia, fény-	$Q, (Q_{\rm v})$
quantity of light	mennyiség	- / /
luminous flux	fényáram	$arPhi,(arPhi_{ m v})$

luminous intensity:	fényerősség	$I, (I_{\rm v})$
$\Phi = \int I \mathrm{d}\Omega$		
spectral luminous intensity	fényerősség spektrális sűrű-	$I_{\sigma}, (I_{\mathrm{v},\sigma})$
in terms of wave number	sége (hullámszámban)	
illuminance, illumination:	megvilágítás	$E, (E_{\rm v})$
$\Phi = \int E \mathrm{d}A$		
luminance: $I = \int L \cos \vartheta \mathrm{d}A$	fénysűrűség	$L, (L_{\rm v})$
luminous excitance:	kisugárzott felületi fényáram	$M, (M_{\rm v})$
$\Phi = \int M \mathrm{d}A$		
absorptance, absorption	elnyelési (abszorpciós) tényező	α
factor: $\Phi_{\rm a}/\Phi_0$		
luminous absorptance	fényelnyelési tényező	$lpha_{ m v}$
spectral absorption	spektrális elnyelési tényező	$lpha(\lambda)$
factor: $\Phi_{\rm a}(\lambda)/\Phi_0(\lambda)$		
reflectance, reflection	visszaverési (reflexiós) tényező	ho
factor: $\Phi_{ m r}/\Phi_0$		
luminous reflectance	fényvisszaverési tényező	$ ho_{ m v}$
spectral reflection	spektrális visszaverési tényező	$ ho(\lambda)$
factor: $\Phi_{ m r}(\lambda)/\Phi_0(\lambda)$		
transmittance, transmission	$ ext{áteresztési}$ (transzmissziós)	au
factor: $\Phi_{ m tr}/\Phi_0$	tényező	
luminous transmittance	fényáteresztési tényező	$ au_{ m v}$
spectral transmission	spektrális áteresztési	$ au(\lambda)$
factor: $\Phi_{ m tr}(\lambda)/\Phi_0(\lambda)$	tényező	
transmittance density,	optikai sűrűség	A, D
optical density: $-\log \tau$		
absorbance: $-\log_a(1-\alpha)$	elnyelés	A_a
linear absorption coefficient: A/l	lineáris elnyelési (extinkciós) együttható	a
linear attenuation coefficient,	lineáris gyengítési együttható	μ
linear extinction coefficient		
radiance factor	sugársűrűségi tényező	β
luminance factor	fénysűrűségi tényező	$\beta_{\rm v}$
first radiation constant:	első sugárzási állandó	c_1
$2\pi hc^2$		
second radiation constant:	második sugárzási állandó	c_2
$hc/k_{ m B}$		

photon number	fotonszám	$N_{ m p}$
photon flux: dN_p/dt	fotonfluxus	$arPhi, arPhi_{ m p}$
photon intensity: $\mathrm{d} \varPhi_\mathrm{p} / \mathrm{d} \varOmega$	fotonáram intenzitása	$I, I_{\rm p}$
photon luminance: dI_p/dA	fotonfénysűrűség	$L, L_{\rm p}$
photon irradiance: $\mathrm{d}\Phi_\mathrm{p}/\mathrm{d}A$	besugárzott fotonáram	$E, E_{\rm p}$
photon excitance: $\mathrm{d}\Phi_\mathrm{p}/\mathrm{d}A$	kisugárzott fotonáram	$M,M_{\rm p}$
$\mathbf{A}\mathbf{k}\mathbf{u}\mathbf{s}\mathbf{z}\mathbf{t}\mathbf{i}\mathbf{k}\mathbf{a}$		
frequency	frekvencia	f
acoustic pressure	hangnyomás	p
sound particle velocity	hangrészecskék sebessége	\boldsymbol{u}
velocity of sound	hangsebesség	c
velocity of longitudinal waves	longitudinális hullám sebessége	c_{l}
velocity of transversal waves	transzverzális hullám sebessége	$c_{ m t}$
group velocity	$\operatorname{csoportsebess\acute{e}g}$	c_{g}
sound energy flux, acoustic power	hangteljesítmény	W
incoming sound energy flux	beérkező hangteljesítmény	W_0
reflected sound energy flux	visszaverődő hangteljesítmény	$W_{ m r}$
transmitted sound energy flux	átvezetett hangteljesítmény	$W_{ m tr}$
reflection coefficient: $W_{\rm r}/W_0$	visszaverődési tényező	ρ
acoustic absorption coefficient: $1 - \rho$	akusztikai elnyelési tényező	$\alpha_{\rm a},(\alpha)$
transmission coefficient: $W_{\rm tr}/W_0$	átvezetési tényező	au
dissipation factor: $\alpha_{\rm a} - \tau$	veszteségi tényező	ψ,δ
frequency level: $\log_a(f/f_0)$	${ m hangmagass}{ m ágszint}$	L_f
sound power level:	${ m hangteljes}$ ítményszint	L_W
$\log_a(W/W_0)$		
sound pressure level:	$hangnyom {\'asszint}$	L_p
$\log_a(p/p_0)$		
loudness	hangosság	N
loudness level	${ m hangoss}{ m ágszint}$	L_N

A logaritmikus mennyiségeknél az a alap függ attól, hogy milyen mennyiségről van szó, és azt milyen mértékegységben adjuk meg. Részletesebben lásd a mértékegységekről szóló részben.

${f Kv}antummechanika$

Szokásos konvenció, hogy $^{\rm k}$ ülönbözteti meg az operátort más algebrai mennyiségtől.

momentum operator	impulzusoperátor lendületoperátor	$oldsymbol{p},\hat{oldsymbol{p}}$
kinetic energy operator	kinetikus energia operátora	T,\hat{T}
Hamiltonian operator	Hamilton-operátor	H, \hat{H}, \mathcal{H}
wave function	hullámfüggvény	Ψ, ψ, φ
complex conjugate of Ψ	Ψ komplex konjugáltja	Ψ^*
hydrogen-like wave function	hidrogénszerű hullámfüggvény	$\psi_{nlm}(r,\vartheta,\phi)$
probability density: $\Psi^*\Psi$	valószínűségi sűrűség	P
probability current density: $(\hbar/2im)(\Psi^*\nabla\Psi - \Psi\nabla\Psi^*)$	valószínűségi áramsűrűség	old S
charge density of electrons: $-eP$	elektronok töltéssűrűsége	ρ
current density of electrons: $-e S$	elektronok áramsűrűsége	j
Dirac bra vector	Dirac-féle bra-vektor	<
Dirac ket vector	Dirac-féle ket-vektor	$ \dots\rangle$
commutator of A and B : AB - BA	A és B kommutátora	$[A, B]_{-}, \\ [A, B]$
anticommutator of A and B : AB + BA	${\cal A}$ és ${\cal B}$ antikommutátora	$[A,B]_+,$
matrix element: $\int \phi_i^* A \phi_j \mathrm{d}\tau$	mátrixelem	A_{ij}
expectation value of A : $Tr(A)$	Avárható értéke	$\langle A \rangle$
Hermitian conjugate of operator A	A operátor adjungáltja (hermitikus konjugáltja)	A^{\dagger}
momentum operator in coor- dinate representation	impulzusoperátor koordináta- reprezentációban	$(\hbar/i) \nabla$
annihilation operators	eltüntető operátor	a, b, α, β
creation operators	keltő operátor	$a^{\dagger}, b^{\dagger}, \alpha^{\dagger}, \beta^{\dagger}$
spin wavefunction	spinfüggvény	lpha,eta
Planck constant	Planck-állandó	h
reduced Planck constant: $h/2\pi$	redukált Planck-állandó	\hbar
Pauli matrices:	Pauli-mátrix	$\boldsymbol{\sigma},\sigma_x,\sigma_y,\sigma_z$
		$\sigma_1, \sigma_2, \sigma_3$
Dirac (4×4) matrices	Dirac-mátrix	$oldsymbol{lpha},$
		$\alpha_x, \alpha_y, \alpha_z, eta$

A Pauli-mátrixok szokásos alakja

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

a Dirac-mátrixok szokásos alakja pedig

$$\alpha_x = \begin{pmatrix} 0 & \sigma_x \\ \sigma_x & 0 \end{pmatrix}, \quad \alpha_y = \begin{pmatrix} 0 & \sigma_y \\ \sigma_y & 0 \end{pmatrix}, \quad \alpha_z = \begin{pmatrix} 0 & \sigma_z \\ \sigma_z & 0 \end{pmatrix},$$
$$\beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \text{ abol } I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ a } 2 \times 2\text{-es egységmátrix.}$$

Atom- és magfizika

nucleon number, mass number	tömegszám, nukleonszám	A
proton number, atomic	rendszám, protonszám	Z
number		
neutron number: $A - Z$	neutronszám	N
elementary charge	elemi töltés	e
electron mass	${ m elektront}{ m \ddot{o}meg}$	$m_{ m e}$
proton mass	$\operatorname{protont\ddot{o}meg}$	$m_{ m p}$
neutron mass	$neutront\"omeg$	$m_{ m n}$
nuclear mass (of nucleus ^{A}X)	magtömeg (A X magé)	$m_{\rm N}, m_{\rm N}(^A X)$
atomic mass (of nuclide ^{A}X)	atomtömeg (A X atomé)	$m_{\rm a}, m_{\rm a}({}^{A}X)$
(unified) atomic mass	atomi tömegállandó	$m_{ m u}$
constant: $\frac{1}{12}m_{\rm a}({}^{12}{\rm C})$		
relative atomic mass	relatív atomtömeg	$A_{ m r},M_{ m r}$
mass excess: $m_{\rm a} - A m_{\rm u}$	tömegtöbblet	Δ
mass defect	tömeghiány	B
Bohr radius	Bohr-sugár	a_0
Hartree energy	Hartree-energia	$E_{ m h}$
Rydberg constant	Rydberg-állandó	R_{∞}
fine-structure constant	finomszerkezeti állandó	α
ionization energy	ionizációs energia	$E_{\rm i},I$
electron affinity	elektronaffinitás	$E_{\rm ea},A$
electronegativity	elektronegativitás	χ
dissociation energy	disszociációs energia	$E_{ m d},D$
principal quantum number	főkvantumszám	n, n_i
orbital angular momentum	${ m mell}\acute{ m e}{ m k}$ kvantumszám	L, l_i
quantum number	(p alyamomentum)	
	kvantumszáma)	
spin quantum number	${ m spinkvantums}$ zám	S, s_i

total angular momentum	teljes impulzusmomentum	J, j_i
quantum number	kvantumszáma	
magnetic quantum number	mágneses kvantumszám	M, m_i
nuclear spin q.n.	${ m magspinkvantumsz}{ m ám}$	I, J
hyperfine q.n.	hiperfinom-kvantumszám	F
rotational q.n.	forgási kvantumszám	J, K
vibrational q.n.	rezgési kvantumszám	v
quadrupole moment	kvadrupólus-momentum	$Q, \boldsymbol{Q}, \boldsymbol{Q}_{ij}$
magnetic moment of a particle	részecske mágneses momen- tuma	μ
magnetic moment of proton	proton mágneses momentuma	$\mu_{ m p}$
magnetic moment of neutron	neutron mágneses momen- tuma	$\mu_{ m n}$
magnetic moment of electron	elektron mágneses momen- tuma	$\mu_{ m e}$
Bohr magneton	Bohr-magneton	$\mu_{ m B}$
nuclear magneton	magmagneton	$\mu_{ m N}$
g-factor	g-faktor	g
gyromagnetic ratio, gyro- magnetic coefficient: ω/B	giromágneses hányados	γ
electron g-factor: $2\mu_{\rm e}/\mu_{\rm B}$	elektron g -faktora	$g_{ m e}$
gyromagnetic ratio of electron: $ g_{\rm e} \mu_{\rm B}/\hbar$	elektron giromágneses hányadosa	$\gamma_{ m e}$
Landé g-factor: $2\mu_J/J\mu_{\rm B}$	Landé-faktor	$g_{ m J}$
proton g-factor: $2\mu_{\rm p}/\mu_{\rm N}$	proton g -faktora	$g_{ m p}$
nuclear g-factor: $\mu/I\mu_{ m N}$	mag g -faktora	$g_{ m N}$
Larmor angular frequency	Larmor-(kör)frekvencia	$\omega_{ m L}$
reaction energy, disintegration energy	reakcióenergia, bomlási ener- gia	Q
cross section	${\it hat} {\it \acute{a}skeresztmetszet}$	σ
macroscopic cross section	makroszkopikus hatáskereszt- metszet	Σ
total cross section	teljes hatáskeresztmetszet	$\sigma_{ m tot}$
spectral cross section	spektrális hatáskereszt- metszet	$\mathrm{d}\sigma/\mathrm{d}E,\sigma_E$
differential cross section	differenciális hatáskereszt- metszet	$\mathrm{d}\sigma/\mathrm{d}\Omega,\sigma_{\Omega}$

spectral differential cross	spektrális differenciális	$\mathrm{d}^2\sigma/\mathrm{d} E\mathrm{d} \varOmega$
section	${\it hat} {\it \acute{askeresztmetszet}}$	
impact parameter	ütközési paraméter	b
scattering angle	szórási szög	θ
internal conversion coefficient	belső konverziós tényező	α
mean life, lifetime: $1/\lambda$	átlagos élettartam	$\tau, \tau_{\rm m}$
half life	felezési idő	$T_{1/2}, \tau_{1/2}$
level width: \hbar/ au	szintszélesség, nívószélesség	Γ
decay (rate) constant, disin-	bomlási állandó,	λ
tegration (rate) constant	bomlási együttható	
activity	aktivitás	A
Compton wavelength: h/mc	Compton-hullámhossz	$\lambda_{ m C}$
electron radius	elektronsugár	$r_{ m e}$
linear attenuation coefficient	lineáris gyengülési együttható	μ,μ_l
atomic attenuation coefficient	atomi gyengülési együttható	μ_{a}
mass attenuation coefficient	tömegi gyengülési együttható	μ_m
linear stopping power	teljes lineáris fékezőképesség	S, S_l
atomic stopping power	teljes atomi fékezőképesség	S_{a}
mass stopping power	teljes tömegi fékezőképesség	S_m
linear range	átlagos lineáris hatótávolság	R, R_l
recombination coefficient	rekombinációs együttható	α

Molekulas pektros zkópia

A term kifejezést az alábbiakban az energiának $hc\mbox{-vel}$ osztott, hullámszámban megadott értékét jelenti.

electronic term: $E_{\rm e}/hc$	elektronterm	$T_{ m e}$
vibrational term: $E_{\rm vibr}/hc$	rezgési term	G
rotational term: $E_{\rm rot}/hc$	forgási term	F
total term: $T_{\rm e} + G + F$	teljes term	T
principal moments of inertia:	fő tehetetlenségi nyomatékok	I_A, I_B, I_C
$I_A \le I_B \le I_C$		
rotational constants:	forgási (rotációs) állandó	A, B, C
$A = h/8\pi^2 c I_A$		
asymmetry parameter:	${ m aszimmetria} { m param}$ éter	κ
(2B - A - C)/(A - C)		
quantum number of vib-	rezgési kvantumszám	v
rational mode		
degeneracy of vibrational	rezgési módus degenerációfoka	d

mode		
harmonic vibration wave	harmonikus rezgési hullám-	$\sigma_{ m e},\sigma_j$
number	szám	
vibrational anharmonicity	rezgési anharmonicitási	x_{e}, x_{jk}
$\operatorname{constant}$	állandó	Ū

A rezgési term harmonikus és anharmonikus tagjának állandóit kétatomos molekuláknál a

$$G = \sigma_{\mathrm{e}}\left(v + \frac{1}{2}\right) - x\sigma_{\mathrm{e}}\left(v + \frac{1}{2}\right)^{2},$$

többatomos molekuláknál a

$$G = \sum_{j} \sigma_{j} \left(v_{j} + \frac{1}{2} d_{j} \right) + \frac{1}{2} \sum_{j} \sum_{k} x_{jk} \left(v_{j} + \frac{1}{2} d_{j} \right) \left(v_{k} + \frac{1}{2} d_{k} \right)$$

összefüggéssel definiáljuk.

Az impulzus
momentum járulékaira (szokásosan a $\hbar\-$ sal dimenziótlanított mennyis
égre) és azok kvantumszámára a következő jelölések használatosak:

		Kvantumszám jele		
Járulék az	Operátor		külső tér	szimmetria-
impulzus-	jele	nagyság	irányába eső	tengelyre
${ m momentumhoz}$		(hossz)	vetület	nézve
elektron pálya-	$oldsymbol{L},oldsymbol{l}$	L, l	M_L, m_l	Λ, λ_i
momentum				
elektronspin	$oldsymbol{S},oldsymbol{s}$	S,s	M_S, m_s	Σ, σ_i
elektronok teljes	$oldsymbol{L}+oldsymbol{S}$			Ω, ω_i
járuléka				
mag forgási perdület	R	R		
magspin	I	Ι	M_I	
belső rezgési	l, j	l		K_l
teljes, spinek	N	N		K
nélkül: $oldsymbol{R}+oldsymbol{L}$				
teljes, magspinek	J	J	M, M_J	P
nélkül: $N + S$				
teljes: $\boldsymbol{J} + \boldsymbol{I}$	F	F	M_F	

Szilárdtest-fizika

lattice vector	kristályrács eltolási vektora	$oldsymbol{R},oldsymbol{R}_0$
fundamental lattice vector:	kristály elemi rácsvektora	$oldsymbol{a}_1,oldsymbol{a}_2,oldsymbol{a}_3$
$\boldsymbol{R} = n_1 \boldsymbol{a}_1 + n_2 \boldsymbol{a}_2 + n_3 \boldsymbol{a}_3$		$oldsymbol{a}, oldsymbol{b}, oldsymbol{c}$
angular reciprocal lattice	(cirkuláris) reciprokrács-	G
vector: $\boldsymbol{G} \cdot \boldsymbol{R} = 2\pi m$	vektor	
fundamental reciprocal	elemi (cirkuláris)	$oldsymbol{b}_1,oldsymbol{b}_2,oldsymbol{b}_3$
lattice vector:	reciprokrács-vektor	$oldsymbol{a}^*,oldsymbol{b}^*,oldsymbol{c}^*$
$oldsymbol{a}_i \cdot oldsymbol{b}_k = 2\pi\delta_{ik}$		
lattice plane spacing	rácssíkok távolsága	d
atomic scattering factor	atomi szórási tényező	f
structure factor	szerkezeti tényező	F(hkl)
Bragg angle	Bragg-szög	θ
order of reflexion	reflexió rendje	n
short-range order parameter	rövid távú rendparaméter	σ
long-range order parameter	hosszú távú rendparaméter	S
Burgers vector	Burgers-vektor	b
particle position vector	részecske helyvektora	$oldsymbol{r},oldsymbol{R}$
equilibrium position vector	ion egyensúlyi helyvektora	$oldsymbol{R}_0$
of an ion		
displacement vector of ion	ion elmozdulásvektora	\boldsymbol{u}
normal coordinates	$\operatorname{norm}{lpha}lko ordin{lpha}{ta}$	Q_i
conjugate momenta	konjugált impulzus	Π_i
polarization vector	polarizációs vektor	e
Debye–Waller factor: e^{-2W}	Debye–Waller-tényező	D
Debye angular wave number	Debye-körhullámszám	$q_{ m D}$
Debye angular frequency	Debye-körfrekvencia	$\omega_{ m D}$
Debye temperature	Debye-hőmérséklet	Θ_{D}
Grüneisen parameter: $\alpha/\kappa\rho c_V$	Grüneisen-paraméter	γ, Γ
Madelung constant	Madelung-tényező	α, A
mean free path of electrons	elektron szabad úthossza	$l_{\rm e},l$
mean free path of phonons	fonon szabad úthossza	$l_{\mathrm{ph}},~\Lambda$
drift velocity	sodródási sebesség	$v_{ m dr}$
mobility	mozgékonyság	μ
one-electron wave function	egyelektronos hullámfüggvény	$\psi(oldsymbol{r})$
charge density of electrons:	elektron töltéssűrűsége	ρ
$-e\psi^*(oldsymbol{r})\psi(oldsymbol{r})$		

Bloch wave function:	Bloch-függvény	$u_{oldsymbol{k}}(oldsymbol{r})$
$\psi_{oldsymbol{k}}(oldsymbol{r}) = u_{oldsymbol{k}}(oldsymbol{r}) \exp(\mathrm{i}oldsymbol{k}\cdotoldsymbol{r})$		
(energy) density of states: dN(E)/dE	állapotsűrűség	ρ, N_E, n_E
(spectral) density of vibra-	rezgési módusok spektrális	g, N_{ω}
tional modes: $dN(\omega)/d\omega$	sűrűsége	
exchange integral	kicserélődési integrál	J, K
resistivity	fajlagos ellenállás	ρ
resistivity tensor	fajlagos ellenállástenzor	$ ho_{ik}$
electric conductivity	elektromos vezetőképesség	σ
electric conductivity tensor	elektromos vezetőképesség- tenzor	σ_{ik}
conductance quantum: $2e^2/h$	${ m konduktanciakvantum}$	G_0
thermal conductivity	hővezető képesség	λ
thermal conductivity tensor	hővezetőképesség-tenzor	λ_{ik}
residual resistivity	maradék-ellenállás	$ ho_{ m R}$
relaxation time	relaxációs idő	au
Lorenz coefficient: $\lambda/\sigma T$	Lorenz-együttható	L
Hall coefficient	Hall-együttható	$R_{ m H},A_{ m H}$
von Klitzing constant: h/e^2	von Klitzing-állandó	$R_{ m K}$
Ettingshausen coefficient	Ettingshausen-együttható	$A_{\rm E},P_{\rm E}$
first Nernst–Ettingshausen	első Nernst–Ettingshausen-	$A_{ m N}$
$\operatorname{coefficient}$	${ m egy}$ üttható	
first Righi–Leduc coefficient	első Righi–Leduc-együttható	$A_{\mathrm{RL}},S_{\mathrm{RL}}$
thermoelectromotive force	termoelektromotoros erő	$E_{\rm ab},\Theta_{\rm ab}$
between substances	a és b közeg között	
a and b		
Seebeck coefficient for	Seebeck-együttható	$S_{ m ab},\epsilon_{ m ab}$
substances a and b:	a és b közeg között	
$\mathrm{d}E_{\mathrm{ab}}/\mathrm{d}T$		
Peltier coefficient for	Peltier-együttható	$\Pi_{ m ab}$
substances a and b	a és b közeg között	
Thomson coefficient	Thomson-együttható	$\mu,(au)$
work function: $\Phi = e\phi$	kilépési munka	ϕ, \varPhi
Richardson constant:	$\operatorname{Richardson-egy}$ üttható	A
$j = AT^2 \exp(-\varPhi/kT)$		
longitudinal (spin-lattice)	longitudinális (spin-rács)	T_1

relaxation time	relaxációs idő	
transverse (spin-spin)	transzverzális (spin-spin)	T_2
relaxation time	relaxációs idő	
electron (number) density	elektronsűrűség	$n, n_{\rm n}, n_{-}$
hole (number) density	lyuksűrűség	$p, n_{\rm p}, n_{+}$
donor number density	donorsűrűség	$n_{ m d}$
acceptor number density	akceptorsűrűség	n_{a}
intrinsic carrier density:	saját vezetésű töltés-	$n_{ m i}$
$(n \cdot p)^{1/2}$	hordozó sűrűsége	
gap energy	tiltott sáv szélessége	E_{g}
donor ionization energy	donor ionizációs energiája	$E_{\rm d}$
acceptor ionization energy	akceptor ionizációs energiája	E_{a}
ionization energy	ionizációs energia	$E_{\rm i}$
Fermi energy	Fermi-energia	$E_{ m F}, arepsilon_{ m F}$
Fermi temperature	Fermi-hőmérséklet	$T_{ m F}$
angular wave number	körhullámszám	k,q
angular wave vector, propa-	részecske hullámvektora	\boldsymbol{k}
gation vector (of particles)		
angular wave vector, propa-	fonon hullámvektora	q
gation vector (of phonons)		
Fermi angular wave number	Fermi-körhullámszám	$k_{ m F}$
Fermi angular wave vector	Fermi-hullámvektor	$oldsymbol{k}_{ m F}$
electron annihilation operator	elektron eltüntető operátora	a_{\perp}
electron creation operator	elektron keltő operátora	a^{\dagger}
phonon annihilation operator	fonon eltüntető operátora	b
phonon creation operator	fonon keltő operátora	b^{\dagger}
effective mass	effektív tömeg	$m^*, m^*_{ m n}, m^*_{ m p}$
cyclotron mass	$\operatorname{ciklotront\"omeg}$	$m_{ m c}$
cyclotron angular	ciklotron-körfrekvencia	$\omega_{ m c}$
frequency: $(e/m_{\rm c})B$		
mobility: $v_{\rm dr}/E$	mozgékonyság	$\mu,\mu_{ m n},\mu_{ m p}$
mobility ratio: $\mu_{ m n}/\mu_{ m p}$	${ m mozg}$ ékonyságarány	b
diffusion coefficient	diffúziós együttható	$D, D_{\mathrm{n}}, D_{\mathrm{p}}$
diffusion length: $\sqrt{D\tau}$	diffúziós hossz	$L, L_{\mathrm{n}}, L_{\mathrm{p}}$
carrier lifetime	töltéshordozó élettartama	$ au, au_{ m n}, au_{ m p}$
characteristic (Weiss) tempe-	karakterisztikus (Weiss-féle)	$\Theta, \Theta_{\mathrm{W}}$
rature	hőmérséklet	

Curie temperature	Curie-hőmérséklet	$T_{ m C}$
Néel temperature	Néel-hőmérséklet	$T_{ m N}$
superconductor transition temperature	szupravezető átalakulási hőmérséklete	$T_{ m c}$
thermodynamic critical field strength	szupravezető (termodinami- kai) kritikus térerőssége	$H_{\rm c}$
superconductor critical field strength (type II)	másodfajú szupravezető kritikus térerősségei	H_{c1}, H_{c2}, H_{c3}
thermodynamic critical magnetic flux density	szupravezető (termodinami- kai) kritikus térerőssége	$B_{ m c}$
lower critical magnetic flux density	alsó kritikus mágneses- fluxus-sűrűség	B_{c1}
upper critical magnetic flux density	felső kritikus mágneses- fluxus-sűrűség	B_{c2}
superconductor energy gap	szupravezető energiarése	Δ
London penetration depth	London-féle behatolási mély- ség	$\lambda_{ m L}$
coherence length	${\rm koherenciahossz}$	ξ
Landau–Ginzburg number: $\lambda_{\rm L}/\sqrt{2}\xi$	Landau–Ginzburg-szám	К
magnetic flux quantum: $h/2e$	fluxuskvantum	Φ_0
Josephson constant: $1/\Phi_0$	Josephson-állandó	K_{J}

Az effektív tömeg (m^*) , mobilitás (μ) , diffúziós együttható (D), diffúziós hossz (L) és a töltéshordozók élettartama (τ) jele melletti n, illetve p index negatív töltésű elektronokra, illetve pozitív töltésű lyukakra utal.

 (h_1, h_2, h_3) vagy (h, k, l) szolgál a kristály egy felülete vagy párhuzamos síkserege Miller-indexeinek jelölésére. $\{h_1, h_2, h_3\}$ vagy $\{h, k, l\}$ pedig a szimmetria miatt ekvivalens síkok teljes seregét jelöli.

A (h, k, l) Miller-indexű síktól származó Bragg-csúcs indexei: h, k, l.

[u,v,w]szolgál egy irány jelölésére a rácsban,
 $\langle u,v,w\rangle$ pedig a szimmetria miatt ekvivalens irányok teljes halmazát jelöli.

A kristálytani síkok és irányok jeleinél a vesszők elmaradnak, ha a betűk helyett számok állnak. Negatív számokat a szám fölötti vonallal jelezzük, pl. (110).

A krisztallográfiában a reciprok rács elemi vektorait az $\mathbf{a}_i \cdot \mathbf{b}_k = \delta_{ik}$ összefüggéssel definiálják. A szilárdtest-fizikában, ahol az $\mathbf{a}_i \cdot \mathbf{b}_k = 2\pi \delta_{ik}$ definíció a szokásos, tulajdonképpen a cirkuláris reciprokrács-vektor elnevezés lenne jogos.

Kémiai fizika

relative atomic mass: $m/m_{\rm u}$	relatív atomtömeg	$A_{ m r}$
relative molecular mass	relatív molekulatömeg	$M_{ m r}$
amount of substance	${ m any}{ m agmenny}{ m is}{ m \acute{e}g}$	n
number of particles	részecskék száma	$N_{\rm B}$
of substance B	(B anyagé)	
molar mass: m/n	móltömeg	M
concentration of sub-	koncentráció (B anyagé)	c_{B}
stance B: $n_{\rm B}/V$		
mass density: m/V	sűrűség	ρ, γ
mass concentration of	tömegkoncentráció	$\rho_{\rm B}, \gamma_{\rm B}$
substance B: $m_{\rm B}/V$	(B anyagé)	
mole fraction of sub-	móltört (B anyagé)	x_{B}
stance B: $n_{\rm B}/n$, <u> </u>	
mass fraction of sub-	tömegtört (B anyagé)	$w_{\rm B}$
stance B: $m_{\rm B}/m$		
volume fraction of sub-	térfogattört (B anyagé)	$\varphi_{ m B}$
stance B: $V_{\rm B}/V$		
molar ratio of solution	mólarány (oldott B anyagé)	$r_{\rm B}$
molality of substance B	molalitás (oldott B anyagé)	$m_{\rm B},b_{\rm B}$
in solution: $n_{\rm B}/m$		
chemical potential	kémiai potenciál	μ
absolute activity of a	abszolút aktivitás	$\lambda_{ m B}$
substance B: $\exp(\mu_{\rm B}/kT)$	(B anyagé)	
relative activity of a	relatív aktivitás	a_{B}
substance B	(B anyagé)	
partial pressure of	parciális nyomás	p_{B}
substance B	(B anyagé)	
fugacity of a substance B	fugacitás (B anyagé	$f_{\rm B}, \overline{p_{\rm B}}$
in a gaseous mixture	gázelegyben)	
osmotic pressure	ozm ózisnyomás	П
osmotic coefficient	ozmotikus tényező	ϕ
stoichiometric number	sztöchiometriai szám	$\nu_{\rm B}$
of substance B	(B anyagé)	
affinity of a chemical	kémiai reakció affinitása	A
reaction		
extent of reaction:	reakció előrehaladási foka	ξ

$\mathrm{d}\xi_\mathrm{B} = \mathrm{d}n_\mathrm{B}/\nu_\mathrm{B}$		
equilibrium constant	egyensúlyi állandó	K
charge number of an ion	ion töltésszáma	z
Faraday constant: $N_{\rm A}e$	Faraday-állandó	F
ionic strength	ionerősség	Ι
degree of dissociation,	disszociációfok	α
dissociation factor		
optical rotatory power	optikai aktivitás	α
Plazmafizika		
energy of particle	részecske energiája	ε
dissociation energy	disszociációs energia	$E_{\mathrm{d}}, E_{\mathrm{d}}(X)$
(of molecule X)	(X molekuláé)	
electron affinity	${ m elektronaffinit}$ ás	E_{ea}
ionization energy	ionizációs energia	$E_{\rm i}$
degree of ionization	ionizáció foka	x
charge number of ion	ion töltésszáma	z
number density of ions	ztöltésszámú ionok	n_z
of charge number z	számsűrűsége	
degree of ionization for	ionizációfok $z\geq 1$	x_z
charge number $z \ge 1$:	töltésszám esetén	
$n_z/(n_z + n_{z-1})$		
neutral particle temperature	semleges részecskék hőmér- séklete	T_{n}
ion temperature	ionh őmérséklet	T_{i}
electron temperature	elektron-hőmérséklet	$T_{ m e}$
electron number density	elektronok számsűrűsége	$n_{ m e}$
electron plasma angular	elektronok plazma-	$\omega_{ m pe}$
frequency:	körfrekvenciája	
$\omega_{ m pe}^2 = n_{ m e} e^2/\epsilon_0 m_{ m e}$		
Debye length	Debye-hossz	$\lambda_{ m D}$
charge of particle	részecske töltése	q
electron cyclotron angular	elektron ciklotron-	$\omega_{ m ce}$
frequency: $(e/m_{\rm e})B$	körfrekvenciája	
ion cyclotron angular	ion ciklotron-	$\omega_{ m ci}$
frequency: $(ze/m_{\rm i})B$	körfrekvenciája	
reduced mass:	redukált tömeg	$\mu,m_{ m r}$
$m_1 m_2 / (m_1 + m_2)$		

impact parameter	ütközési paraméter	b
mean free path	átlagos szabad úthossz	l,λ
collision frequency	ütközési frekvencia	$ u_{ m coll}, u_{ m c}$
mean time interval between collisions: $1/\nu_{coll}$	ütközések közötti átlagos idő	$ au_{\mathrm{coll}}, au_{\mathrm{c}}$
cross section: $1/nl$	${\it hat} {\it \acute{a}skeresztmetszet}$	σ
(electron) ionization efficiency	ionizációs hatásfok	$s_{ m e}$
rate coefficient	reakciósebesség	k
one-body rate coefficient: $-dn_A/dt = k_m n_A$	egyrészecske-folyamat reakciósebessége	$k_{ m m}$
relaxation time: $1/k_{\rm m}$	relaxációs idő	au
binary rate coefficient	kétrészecskés folyamat reakciósebessége	$k_{ m b}$
ternary rate coefficient	háromrészecskés folyamat reakciósebessége	$k_{ m t}$
Townsend (electron) ioniza- tion coefficient	elektronok Townsend-féle ionizációs együtthatója	α
Townsend (ion) ionization coefficient	ionok Townsend-féle ionizációs együtthatója	β
secondary electron emission coefficient	elektronkiváltási együttható	γ
drift velocity	sodródási sebesség	$v_{ m dr}$
mobility: $v_{\rm dr}/E$	${ m mozg}\acute{ m e}{ m konys}\acute{ m ag}$	μ
positive or negative ion diffusion coefficient	pozitív vagy negatív ion diffúziós együtthatója	D_+, D
electron diffusion coefficient	elektron diffúziós együtt- hatója	$D_{ m e}$
ambipolar (ion-electron) diffusion coefficient: $(D_+\mu_e + D_e\mu_+)/(\mu_+ + \mu_e)$	ambipoláris (ion-elektron) diffúziós együttható	$D_{\rm a}, D_{\rm amb}$
characteristic diffusion length	karakterisztikus diffúziós hossz	$L_{ m D},\Lambda$
ionization frequency	ionizációs frekvencia	$ u_{ m i}$
ion-ion recombination coefficient: $dn / dt = -\alpha n n$	ion-ion rekombinációs együttható	$lpha_{ m i}$
electron-ion recombination	elektron-ion rekombinációs	$lpha_{ m e}$

coefficient:	${ m egy}$ üttható	
$\mathrm{d}n_{\mathrm{e}}/\mathrm{d}t = -\alpha_{\mathrm{e}}n_{\mathrm{e}}n_{+}$		
plasma pressure	plazmanyomás	p
magnetic pressure: $B^2/2\mu$	mágneses nyomás	$p_{ m m}$
magnetic pressure ratio: $p/p_{\rm m}$	mágneses nyomásarány	eta
magnetic diffusivity: $1/\mu\sigma$	mágneses diffuzivitás	$\nu_{ m m},\eta_{ m m}$
Alfvén speed: $B/(\mu\rho)^{1/2}$	Alfvén-sebesség	v_{A}

Karakterisztikus számok

A * felső indexszel különböztetjük meg a biner keverékek tömeg
transzportját jellemző számokat.

Alfvén-szám	Al
Cowling-szám (második)	Co, Co_2
első Cowling-szám	Co_1
Euler-szám	Eu
Fourier-szám	Fo, Fo^*
Froude-szám	Fr
Grashof-szám	Gr, Gr^*
Hartmann-szám	Ha
Knudsen-szám	Kn
Lewis-szám	Le
Mach-szám	Ma
Nusselt-szám	Nu, Nu^*
Péclet-szám	Pe, Pe^*
Prandtl-szám	Pr
Rayleigh-szám	Ra
Reynolds-szám	Re
mágneses Reynolds-szám	Rm
Schmidt-szám	Sc
Stanton-szám	St, St^*
Strouhal-szám	Sr
Weber-szám	We

4. A fizikai mennyiségek egységei

Bár a fizikai irodalom egy része még a cgs egységrendszert használja, törvényesen az SI rendszert kell alkalmazni. Ennek alapmennyiségeit, alapegységeit és azok jelét a következő táblázat tartalmazza.

Monnyigóg	A mértékegység		
Mennyiseg	neve	jele	
hosszúság	méter	m	
tömeg	kilogramm	kg	
idő	${ m m}{ m ásodperc}$	\mathbf{S}	
elektromos áramerősség	amper	А	
termodinamikai hőmérséklet	kelvin	Κ	
${ m any}{ m agmenny}{ m is}{ m \acute{e}g}$	mól	mol	
fényerősség	kandela	cd	

A következő táblázatban az SI külön nevű származtatott egységeit és azok jelét adjuk meg, valamint kifejezésüket más SI-egységekkel.

	A mértékegység		
Mennyiseg	neve	jele	definíciója
síkszög	radián	rad	${ m m}{\cdot}{ m m}^{-1}$
térszög	szteradián	sr	${ m m}^2{\cdot}{ m m}^{-2}$
frekvencia	hertz	Hz	s^{-1}
erő	newton	Ν	${ m m}\cdot{ m kg}\cdot{ m s}^{-2}$
nyomás	pascal	Pa	$N \cdot m^{-2}$
energia, munka, hőmennyiség	joule	J	N·m
teljesítmény	watt	W	$J \cdot s^{-1}$
elektromos töltés	$\operatorname{coulomb}$	С	$A \cdot s$
elektromos feszültség	volt	V	$W \cdot A^{-1}$
elektromos kapacitás	farad	\mathbf{F}	$C \cdot V^{-1}$
elektromos ellenállás	ohm	Ω	$V \cdot A^{-1}$
elektromos vezetés	siemens	\mathbf{S}	Ω^{-1}
mágneses fluxus	weber	Wb	$V \cdot s$
mágneses indukció	tesla	Т	${\rm Wb}{\cdot}{\rm m}^{-2}$
induktivitás	henry	Η	${\rm Wb}{\cdot}{\rm A}^{-1}$
fényáram	lumen	lm	$\mathrm{cd}{\cdot}\mathrm{sr}$
megvilágítás	lux	lx	$\mathrm{lm}\cdot\mathrm{m}^{-2}$
radioaktív sugárforrás aktivitása	becquerel	Bq	s^{-1}
elnyelt sugárdózis	gray	Gy	$J \cdot kg^{-1}$
dózisegyenérték	sievert	Sv	$J \cdot k g^{-1}$
katalitikus aktivitás	katal	kat	$\mathrm{mol}\cdot\mathrm{s}^{-1}$

A hertz csak a frekvencia egységeként használható. A körfrekvencia s $^{-1}$ egységének nincs külön neve.

Egy egység többszöröseit előtagok (prefixumok) jelölik. Az SI-ben elfogadott előtagokat az alábbi táblázat tartalmazza.

Előtag	Jele	Szorzótényező	Előtag	Jele	Szorzótényező
deka	da	10^{1}	deci	d	10^{-1}
hekto	h	10^{2}	centi	с	10^{-2}
kilo	k	10^{3}	milli	m	10^{-3}
mega	М	10^{6}	mikro	μ	10^{-6}
giga	G	10^{9}	nano	n	10^{-9}
tera	Т	10^{12}	piko	р	10^{-12}
peta	Р	10^{15}	femto	f	10^{-15}
exa	Ε	10^{18}	atto	a	10^{-18}
zetta	Ζ	10^{21}	zepto	\mathbf{Z}	10^{-21}
jotta	Υ	10^{24}	jokto	У	10^{-24}

A hekto-, deka-, deci- és centi- előtag csak korlátozottan, néhány mértékegységgel használhatók, pl. hektopascal (hPa), dekagramm (dag), deciméter (dm), centiliter (cl), centigray (cGy), centisievert (cSv). A dekagrammra a dag mellett a hagyományos dkg is használható. A többi előtag korlátozás nélkül használható. Az előtagok nem kombinálhatók, pl. kMW helyett GW (gigawatt) használandó. Az előtaggal ellátott egység egy jelnek tekintendő, zárójel nélkül lehet pozitív vagy negatív hatványra emelni.

Az adatmennyiség (információ) egységeként használt bit és byte többszörösei esetén is a kilo-, mega-, tera- stb. prefixum szabályosan tíz megfelelő hatcványát jelöli, tehát $1 \text{ MB} = 10^6 \text{ B}$. A 2 hatványaival megadható többszörösökre a bináris prefixumokat kell használni.

Szorzótényező	Előtag	Jele
$2^{10} = 1024$	kibi	Ki
$2^{20} = 1024^2$	mebi	Mi
$2^{30} = 1024^3$	gibi	Gi
$2^{40} = 1024^4$	tebi	Ti
$2^{50} = 1024^5$	$_{\rm pebi}$	Pi
$2^{60} = 1024^6$	exbi	Ei
$2^{70} = 1024^7$	zebi	Zi
$2^{80} = 1024^8$	yobi	Yi

Törvényesen, korlátozás nélkül használhatók az alábbi táblázatban felsorolt SI-n kívüli mértékegységek:

Monnuicóa	A mértékegység			
Mennyiseg	neve	jele	definíciója	
idő	perc	min	$60\mathrm{s}$	
	óra	h	$60 \min$	
	nap	d	$24\mathrm{h}$	
térfogat	liter	l vagy L	$1{ m dm}^3$	
síkszög	fok	0	$(\pi/180)$ rad	
	(ív)perc	/	$(1/60)^{\circ}$	
	(ív)másodperc	//	(1/60)'	
tömeg	tonna	\mathbf{t}	$10^3 \mathrm{kg} = 1 \mathrm{Mg}$	
sebesség	kilométer per óra	$\mathrm{km/h}$	$0,278\mathrm{m\cdot s^{-1}}$	
munka, energia	wattóra	W·h	$3600\mathrm{J}$	
hőmérséklet	Celsius-fok	$^{\circ}\mathrm{C}$	$\{t\}_{\circ C} = \{T\}_{K} - 273, 15$	

Megjegyzések: A fokkal, ívperccel, ívmásodperccel, illetve a perccel, órával, nappal, héttel, hónappal, évvel kapcsolatban az SI-prefixumok nem használhatók. A °, ', " jelek (miként a % jel is szóköz nélkül, közvetlenül írandók a számérték után, a betűt tartalmazó mértékegységjelek (így a °C is) szóközzel (annak is lehetőleg törhetetlen változatával) kapcsolódnak.

Meghatározott szakterületen, így a fizikában is használható néhány további SI-n kívüli mértékegység:

Mana iné n		A mértéke	egység		
Mennyiseg	neve	jele	definíciója		
hosszúság	angström	Å	$10^{-10} { m m}$		
	csillagászati	au, CSE	$149597870700\mathrm{m}$		
	egység		kb. Föld–Nap távolság		
	parszek	\mathbf{pc}	$\approx 30,857 \cdot 10^{15} \mathrm{m}$		
	fényév	ly	$pprox 9,461 \cdot 10^{15} \mathrm{m}$		
tömeg	egységes atomi	u, Da	$m_{\rm a}(^{12}{\rm C})/12$		
	tömegegység		$\approx 1,661 \cdot 10^{-27} \mathrm{kg}$		
	dalton				
$hat {\'askeresztmetszet}$	barn	b	$10^{-28} \mathrm{m}^2$		
nyomás	bar	bar	$10^5 \mathrm{Pa}$		
	higanymilliméter	m mmHg	$133,322\mathrm{Pa}$		
energia	elektronvolt	eV	$1 \mathrm{eV} = (e/\mathrm{C})\mathrm{J}$		
			$1,60219\cdot10^{-19}\mathrm{J}$		
radioaktív sugár-	curie	Ci	$3,7\cdot10^{10}\mathrm{Bq}$		
forrás aktivitása			· -		

Monnuisóa	A mértékegység					
	neve	jele	definíciója			
besugárzási dózis	röntgen	R	$2{,}58\cdot10^{-4}\mathrm{C/kg}$			
elnyelt sugárdózis	rad	rd, rad	$1 \mathrm{cGy} = 0.01 \mathrm{Gy}$			
dózisegyenérték	rem	rem	$1\mathrm{cSv}=0{,}01\mathrm{Sv}$			

A dalton (Da) és az egységes atomi tömegegység (u) ugyanannak a mértékegységnek alternatív neve. A daltonnal az SI-előtagok is használhatók, pl. kilodalton (kDa), megadalton (MDa). A fermi (1 fm = 10^{-15} m), a mikron (µ), a torr (Torr), az atmoszféra (atm) és a kalória (cal) további használatát a IUPAP nem ajánlja. Az fm (1 fm = 10^{-15} m) a femtométer helyes jele.

Atomfizikai számolásoknál gyakran fizikai állandókat használnak mértékegységként. Az úgynevezett atomi egységrendszerben a tömeg egysége az elektrontömeg (m_e) , a töltés egysége az elemi töltés (e), a hosszúság egysége a Bohr-sugár (a_0) , az energia egysége a Hartree-energia (E_h) , a hatás egysége a redukált Planck-állandó (\hbar) . A spektroszkópiában gyakran a Rydberg-energiát tekintik egységnek: 1 Ry = 0,5 E_h .

Bizonyos dimenziótlan mennyiségeket, pl. amplitúdók hányadosát, teljesítmény hányadosát, frekvenciák hányadosát vagy a valószínűség (relatív gyakoriság) inverzét az A mennyiség a alapú logaritmusával jellemezzük: $K = \log_a A$. Ezek törvényesen nem szabályozott mértékegységei:

Mannaizón	A mértél	xegység	A logaritmus
Mennyiseg	neve	jele	alapszáma
${ m amplit}$ údószint	decibel	dB	$\sqrt[20]{10}$
	neper	Np	е
${ m teljes}$ ít ményszint	decibel	dB	$\sqrt[10]{10}$
	neper	Np	e^2
${ m hangmagass} { m ágszint}$	dekád	_	10
	oktáv	_	2
	félhang	_	$\sqrt[12]{2}$
	savart	_	$\sqrt[300]{2}$
	cent	_	$\sqrt[1200]{2}$
információmennyiség	bit	—	2
	nat	_	е
	hartley	-	10

A dB és Np, illetve a hangmagasságszintre vonatkozó mértékegységek kapcsolatát a $\log_a A = c \log_b A$ egyenlet adja, ahol $a = \sqrt[c]{b}$. Ennek megfelelően:

$$\begin{split} 1\,\mathrm{Np} &= (20\,\mathrm{lg}\,\mathrm{e})\,\mathrm{dB} \approx 8{,}686\,\mathrm{dB},\\ 1\,\mathrm{okt}\mathrm{\acute{a}v} &= \mathrm{lg}\,2\,\mathrm{dek}\mathrm{\acute{a}d} = 12\,\mathrm{f\acute{e}lhang} = 300\,\mathrm{savart} = 1200\,\mathrm{cent}\,. \end{split}$$

5. A kémiai elemek

A kémiai elemek jelét álló (roman) betűtípussal kell írni. Pl. Ca, C, H, He. Felsorolásuk magyar nevükkel, vegyjelükkel és rendszámukkal az alábbi táblázatban található.

Rendszám	Elem neve	Vegyjel	Rendszám	Elem neve	Vegyjel
1	hidrogén	Η	57	lantán	La
2	hélium	He	58	cérium	Ce
3	lítium	Li	59	prazeodímium	\Pr
4	berillium	Be	60	neodímium	Nd
5	bór	В	61	prométium	Pm
6	szén	С	62	szamárium	Sm
7	nitrogén	Ν	63	európium	Eu
8	oxigén	0	64	gadolínium	Gd
9	fluor	F	65	terbium	Tb
10	neon	Ne	66	diszprózium	Dy
11	nátrium	Na	67	holmium	Ho
12	magnézium	Mg	68	erbium	Er
13	alumínium	Al	69	túlium	Tm
14	szilícium	Si	70	itterbium	Yb
15	foszfor	Р	71	lutécium	Lu
16	kén	\mathbf{S}	72	hafnium	$_{\mathrm{Hf}}$
17	klór	Cl	73	tantál	Ta
18	argon	Ar	74	volfrám	W
19	kálium	Κ	75	rénium	Re
20	kalcium	Ca	76	ozmium	Os
21	szkandium	Sc	77	irídium	Ir
22	titán	Ti	78	platina	Pt
23	vanádium	V	79	arany	Au
24	króm	Cr	80	higany	Hg
25	mangán	Mn	81	tallium	Tl
26	vas	Fe	82	ólom	Pb
27	kobalt	Co	83	bizmut	Bi
28	nikkel	Ni	84	polónium	Ро

Rendszám	Elem neve	Vegyjel	Rendszám	Elem neve	Vegyjel
29	réz	Cu	85	asztácium	At
30	cink	Zn	86	radon	Rn
31	gallium	Ga	87	francium	Fr
32	germánium	Ge	88	rádium	Ra
33	$\operatorname{arz\acute{e}n}$	As	89	akt ínium	Ac
34	szelén	Se	90	tórium	Th
35	bróm	Br	91	protaktínium	Pa
36	kripton	Kr	92	urán	U
37	rubídium	Rb	93	neptúnium	Np
38	$\operatorname{stroncium}$	Sr	94	plutónium	Pu
39	ittrium	Υ	95	amerícium	Am
40	cirkónium	Zr	96	kűrium	Cm
41	nióbium	Nb	97	berkélium	$\mathbf{B}\mathbf{k}$
42	molibdén	Mo	98	kalifornium	Cf
43	technécium	Tc	99	einsteinium	Es
44	$\operatorname{rut\acute{e}nium}$	Ru	100	fermium	Fm
45	ródium	Rh	101	mendelévium	Md
46	palládium	Pd	102	nobélium	No
47	ezüst	Ag	103	laurencium	Lr
48	kadmium	Cd	104	radzerfordium	Rf
49	indium	In	105	dubnium	Db
50	ón	Sn	106	szíborgium	Sg
51	antimon	Sb	107	borium	Bh
52	tellúr	Te	108	hasszium	$_{\mathrm{Hs}}$
53	jód	Ι	109	meitnerium	Mt
54	xenon	Xe	110	darmstadtium	Ds
55	cézium	\mathbf{Cs}	111	röntgenium	Rg
56	bárium	Ba	112	kopernícium	Cn

Némely elem többféle kristályos fázisban is megjelenhet. Az ezek megkülönböztetésére szolgáló görög betűt álló szedéssel írjuk: α -vas, δ -vas.

A magban lévő nukleonok számát (tömegszámot) a bal oldali felső indexben adhatjuk meg (pl. $^{14}\mathrm{N}$). Az azonos rendszámú (azonos protonszámú), de különböző tömegszámú atomokat (nuklidokat) izotóp nuklidoknak vagy izotópoknak nevezzük, pl. $^{12}\mathrm{C},~^{14}\mathrm{C}$. Az azonos tömegszámú, de különböző rendszámú nuklidokat pedig izobár nuklidoknak vagy izobároknak nevezzük, pl. $^{14}\mathrm{C},~^{14}\mathrm{N}$. Magfizikában, ahol nem okoz keveredést, a protonok számát (a rendszámot) a bal alsó, a neutronok számát a jobb alsó indexben adhatjuk meg (pl. $^{235}_{92}\mathrm{U}_{143}$). Egyébként a jobb oldali alsó index a molekulában lévő atomok számát jelzi (pl. $^{14}\mathrm{N}_2^{16}\mathrm{O}$). Jobb felső indexszel

adhatjuk meg az ionizációs állapotot (pl. PO_4^{3-}) vagy jelezhetjük, hogy gerjesztett atomi állapotról van szó (pl. He^{*}). A jobb felső indexként megjelenő római szám az oxidációs állapotot jelöli. Pl. $Pb_2^{II}Pb^{IV}O_4$; $K_6M^{IV}Mo_9O_{32}$, ahol M fémes elemet jelöl.

6. Elemi és összetett részecskék

A standard modell elemi részecskéinek, a kvarkoknak, leptonoknak és az elemi bozonoknak a nevét és jelét a következő táblázatok tartalmazzák.

Részec	: ske	Antirészecske			
neve	jele	neve	jele		
u-kvark	u	u-antikvark	ū		
d-kvark	d	d-antikvark	$\overline{\mathbf{d}}$		
c-kvark	С	c-antikvark	$\overline{\mathrm{C}}$		
s-kvark	\mathbf{S}	s-antikvark	$\overline{\mathbf{S}}$		
t-kvark	\mathbf{t}	t-antikvark	\overline{t}		
b-kvark	b	b-antikvark	b		

Kvarkok (q):

A kvarkok neve és jele azonos. Az up, down, charm, strange, top (truth) és bottom (beauty) szavak csak a nevek memorizálását segítik, használatuk kerülendő.

Részecske	9	Antirészec	$_{\rm ske}$
neve	jele	neve	jele
elektron	$e, e^{-}, (\beta^{-})$	pozitron	$e^+, (\beta^+)$
elektronneutrínó	\mathbf{v}_{e}	elektron- antineutrínó	$\overline{\nu}_{e}$
müon	μ, μ^-	antimüon	$\overline{\mu}, \mu^+$
müonneutrínó	$ u_{\mu}$	müon- antineutrínó	$\overline{\nu}_{\mu}$
tau, tauon	τ,τ^-	antitau	$\overline{\tau},\tau^+$
tau-neutrínó	$\nu_{ au}$	tau-antineutrínó	$\overline{\nu}_{\tau}$

Leptonok (l):

Elemi bozonok: a standard modellben csak a fermionoknak van antirészecskéje, az elemi bizonoknak nincs.

Név	Jel	
foton	γ	
W-bozon	W^{\pm}	
Z-bozon	Z, Z^0	
gluon	g	
Higgs-bozon	H^{0}	

A gravitációval való kiegészítésnél megjelenő közvetítő bozon a graviton (G).

A szuperszimmetrikus elméletekben feltételezett részecskék neve elején elején sz- vagy a végén, olykor az -on helyett, -ínó jelenik meg. Szkvarkok (\widetilde{q}) : u-szkvark (\widetilde{u}), d-szkvark (\widetilde{d}), t-szkvark (\widetilde{t}). Szleptonok (\widetilde{l}): szelektron (\widetilde{e}), szneutrínó ($\widetilde{\nu}_{e}$), szmüon ($\widetilde{\mu}$), szmüonszneutrínó ($\widetilde{\nu}_{\mu}$), sztau ($\widetilde{\tau}$), sztauszneutrínó ($\widetilde{\nu}_{\tau}$). Bozínók: gédzsínók [fotínó ($\widetilde{\gamma}$), wínó (\widetilde{W}^{\pm}), zínó (\widetilde{Z}), gluínó (\widetilde{g})], neutralínó, csardzsínó, higgszínó, gravitínó.

A standard modell elemi részecskéiből felépülő néhány barion neve és jele:

Név	Jel	Név	Jel
nukleon	Ν	delta-hiperon	Δ
proton $(^{1}\mathrm{H}^{+})$	p, p^+	lambda-hiperon	Λ
antiproton	$\bar{\mathrm{p}}$	ómega-hiperon	Ω
neutron	n	szigma-hiperon	Σ
antineutron	n	kszi-hiperon	Ξ

Néhány példa mezonokra:

Név	Jel	Név	Jel
pion, pi-mezon	π	J/pszi-mezon	$J/\psi \ \Upsilon \ \eta$
kaon, K-mezon	Κ	üpszilon-mezon	
ró-mezon	ρ	éta-mezon	

A töltést jobb felső +, -, 0 index jelöli (pl. $\pi^+, \pi^-, \pi^0, \Sigma^+, \Xi^-$).

A magfizikában és részecskefizikában szokásos "összetett részecskék", illetve elektronok pozitív részecskékkel alkotott, viszonylag stabil atomszerű párjainak neve és jele:

Név	Jel	Név	Jel
deuteron $(^{2}H^{+})$	d	triton $(^{3}\mathrm{H}^{+})$	t
helion $({}^{3}\mathrm{He}^{2+})$	h	alfa-részecske $(^{4}\text{He}^{2+})$	α
pozitrónium (e^+e^-)	\mathbf{Ps}	müónium $(\mu^+ \mathrm{e}^-)$	Mu

A részecskék nevében és jelében megjelenő görög betűket (pl. α -részecske, Ω -hiperon, Δ -barion, π , μ) álló betűvel írjuk.

A nagyenergiás fizikában a csatolások kovariáns jellegére utaló jelek: skalárcsatolás: S,

vektorcsatolás: V,

tenzorcsatolás: T,

axiálvektor-csatolás: A,

pszeudoskalár-csatolás: P.

7. Kvantumállapotok és átmenetek

Egy rendszer kvantumállapotának betűjelét nagy álló betűvel, egy részecske kvantumállapotának betűjelét kis álló betűvel kell írni. Atomspektroszkópiában a pályamomentum kvantumszámát az alábbi jelekkel jelölik:

l =	0	1	2	3	4	5	6	7	8	9	10	11	
jel	\mathbf{S}	р	d	f	g	h	i	k	1	m	n	0	
L =	0	1	2	3	4	5	6	7	8	9	10	11	
iel	\mathbf{S}	Р	D	F	G	Η	Ι	Κ	L	М	Ν	0	

Az impulzusmomentum jeléhez tett jobb alsó index a teljes impulzusmomentum j vagy J kvantumszámát jelöli, a bal fölső index a 2s + 1 vagy 2S + 1 spin-multiplicitást. Például a j = 3/2 teljes impulzusmomentumú p elektron jele p_{3/2}, a 2S + 1 = 3 spinmultiplicitású, L = 2 pályamomentumú, J = 2 teljes impulzusmomentumú atomi nívó jele ³D₂ (kiejtése triplett-dé-kettő).

Egy atom elektronkonfigurációját szimbolikusan $(nl)^k (n'l')^{k'} \dots$ jelöli, ahol k, k', \dots az n, n', \dots főkvantumszámú, l, l', \dots mellékkvantumszámú állapotban lévő elektronok száma. Az $l = 0, 1, 2, 3, \dots$ számok helyett az álló s, p, d, f, ... betűket használjuk és a zárójelet általában elhagyjuk, pl, $1s^22s^22p^3$ (kiejtése egy-es-kettő-két-es-kettő-két-pé-három).

Egy atomi állapotot az összes kvantumszám, a Russel–Saunders-csatolásban L, S, J és M_J , vagy L, S, M_S és M_L definiálja. Egy atomi termet az L és S kvantumszámmal, egy atomi nívót az L, S és J kvantumszámmal lehet jellemezni.

Hasonló jelöléseket használunk a molekulák elektronállapotának jelölésére, de lineáris molekuláknál görög betűkkel adjuk meg a pályamomentumnak a molekula tengelye irányába eső komponensét:

$\lambda =$	0	1	2	
jel	σ	π	δ	
$\Lambda =$	0	1	2	
jel	Σ	П	Δ	

Inverziócentrummal rendelkező molekuláknál a g (gerade) vagy u (ungerade) jobb oldali alsó index jelöli, hogy a hullámfüggvény inverzióval szemben páros vagy páratlan. Jobb oldali felső + vagy - index jelöli, hogy a molekula szimmetriatengelyére illeszkedő valamelyik síkra való tükrözésre vonatkozóan az állapot szimmetrikus vagy antiszimmetrikus.

Magspektroszkópiában a mag állapotát a J spin és a π paritás segítségével a J^{π} alakban adjuk meg. $\pi = +$ a páros, $\pi = -$ a páratlan paritású állapotra.

Spektroszkópiai átmeneteknél a felső, nagyobb energiájú állapotot ', az alsó,- alacsonyabb energiájú állapotot " jelöli. Például $h\nu = E' - E''$.

Az átmenetet úgy jelöljük, hogy a gerjesztett, magasabb energiájú állapot jelét írjuk előbb. A két állapotot – köti össze, pl. $^2\mathrm{P}_{1/2}$ – $^2\mathrm{S}_{1/2}$. Ha jelezni kívánjuk az átmenet irányát, azt hogy abszorpciós vagy emissziós folyamatról van szó, a \leftarrow vagy \rightarrow jelet használjuk, pl. $^2\mathrm{P}_{1/2}$ \rightarrow $^2\mathrm{S}_{1/2}$ jelöli, hogy emisszióval jutunk a $^2\mathrm{P}_{1/2}$ állapotból a $^2\mathrm{S}_{1/2}$ állapotba, \leftarrow pedig azt, hogy $^2\mathrm{S}_{1/2}$ -ből abszorpcióval jutunk $^2\mathrm{P}_{1/2}$ -be.

A kvantumszámnak az átmenet során bekövetkező megváltozását úgy kell megadni, hogy a felső állapot kvntumszámából vonjuk le az alsó állapot kvantumszámát. Forgási átmeneteknél $\Delta J = J' - J''$ értékét betűvel jelöljük. Az O-, P-, Q-, R- és S-ág ΔJ -2, -1, 0, 1, illetve 2 értékéhez tartozik.

Magreakciókat a következőképpen jelöljük:

kezdeti mag(bejövő részecske, kimenő részecske)végállapoti mag

Például: ¹⁴N(α ,p)¹⁷O, ⁵⁹Co(n, γ)⁶⁰Co, ²³Na(γ ,3n)²⁰Na. Szokás a kinetikában használatos jelölés is, pl. ¹⁴₇N+ $\alpha \rightarrow \frac{17}{8}$ O +p, n \rightarrow p + e + $\overline{\nu_e}$.

Az átmenet multipolaritásának jellemzésére elektromos vagy mágneses monopólus-átmenetnél E0 vagy M0, elektromos vagy mágneses dipólusátmenetnél E1 vagy M1, elektromos vagy mágneses kvadrupólus-ámenetnél E2 vagy M2 használatos.

8. Kristálytani jelölések.

Kristályok szimmetriaelemeinek és a szimmetriaműveleteknek a jele a nemzetközi vagy Hermann–Mauguin-féle, illetve a fizikában gyakori Schoenflies-féle jelölésben:

n fogású forgástengely és forgatás: $n; C_n$,

n fogású csavartengely és csavarva forgatás: n_k $(k = 1, ..., n - 1); C_n^s$,

tükörsík és tükrözés: $m; C_s, \sigma,$

csúszósík és csúsztatva tükrözés: a, b, c, n, d, (attól függően, hogy milyen irányban történik a csúszás); σ^{g} ,

inverziócentrum és középpontos tükrözés: $\bar{1}$; C_i , I, inverziós tengely és inverziós forgatás: \bar{n} ; C_{ni} , tükrözéses forgástengely és tükrözéses forgatás: \tilde{n} ; S_n .

A kristályrendszerek neve és jele: háromhajlású (triklin): a, egyhajlású (monoklin): m, rombos (ortorombos): o, négyzetes (tetragonális): t, háromszöges (romboéderes, trigonális): h, hatszöges (hexagonális): h, szabályos (köbös): c.

A rácstípusok neve és jele: egyszerű (primitív): P, lapcentrált (felületen középpontos): F, tércentrált (térben középpontos): I, lappáron centrált (alaplapon középpontos): C, S, romboéderes: R.

A 14 Bravais-rács-típus neve és jele: egyszerű háromhajlású: aP, $P\bar{1}$; egyszerű egyhajlású: mP, P/2m; alaplapon centrált egyhajlású: mS, C/2m; egyszerű rombos: oP, Pmmm; lappáron centrált rombos: oS, Cmmm; tércentrált rombos: oI, Immm; lapcentrált rombos: oF, Fmmm; egyszerű négyzetes: tP, P4/mmm; tércentrált négyzetes: oI, I4/mmm; egyszerű négyzetes: hR, $R\bar{3}m$; egyszerű hatszöges: hP, P6/mmm; egyszerű köbös: cP, $Pm\bar{3}m$; tércentrált (térben középpontos) köbös: cI, $Im\bar{3}m$; lapcentrált (felületen középpontos) köbös: cF, $Fm\bar{3}m$.